Spaces:
Running
Running
import gradio as gr | |
import torch | |
import librosa | |
import numpy as np | |
from transformers import Wav2Vec2Model, Wav2Vec2Processor | |
import torch.nn as nn | |
# Define emotions | |
emotion_list = ['anger', 'disgust', 'fear', 'happy', 'neutral', 'sad'] | |
# Define the model | |
class EmotionClassifier(nn.Module): | |
def __init__(self, num_classes): | |
super(EmotionClassifier, self).__init__() | |
self.wav2vec2 = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base') | |
encoder_layer = nn.TransformerEncoderLayer(d_model=self.wav2vec2.config.hidden_size, nhead=8, batch_first=True) | |
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=2) | |
self.classifier = nn.Linear(self.wav2vec2.config.hidden_size, num_classes) | |
def forward(self, input_values): | |
outputs = self.wav2vec2(input_values).last_hidden_state | |
encoded = self.transformer_encoder(outputs) | |
logits = self.classifier(encoded[:, 0, :]) | |
return logits | |
# Load your trained model | |
model_path = "best_model_state_dict.pth" | |
num_classes = len(emotion_list) | |
model = EmotionClassifier(num_classes) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) | |
model.eval() | |
# Define processor | |
processor = Wav2Vec2Processor.from_pretrained('facebook/wav2vec2-base') | |
def predict_emotion(audio): | |
# Load and process audio | |
audio, sr = librosa.load(audio, sr=16000) | |
inputs = processor(audio, sampling_rate=sr, return_tensors="pt", padding=True).input_values | |
if inputs.ndimension() == 2: # Ensure correct input shape | |
inputs = inputs.squeeze(0) | |
with torch.no_grad(): | |
logits = model(inputs.unsqueeze(0)).squeeze() | |
# Get predicted emotions | |
probabilities = torch.nn.functional.softmax(logits, dim=-1).cpu().numpy() | |
predictions = {emotion: float(prob) for emotion, prob in zip(emotion_list, probabilities)} | |
return predictions | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=predict_emotion, | |
inputs=gr.Audio(type="filepath"), | |
outputs=gr.Label(num_top_classes=3), | |
title="è¯éŸ³æƒ…感识别", | |
description="ä¸Šä¼ éŸ³é¢‘æ–‡ä»¶ï¼ˆ.wav 或 .mp3)或录制您的声音以预测情感。" | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() |