Upload app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,20 @@ import sys
|
|
| 2 |
import time
|
| 3 |
import warnings
|
| 4 |
from pathlib import Path
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# 配置hugface环境
|
| 8 |
from huggingface_hub import hf_hub_download
|
|
@@ -12,8 +25,34 @@ import glob
|
|
| 12 |
import json
|
| 13 |
|
| 14 |
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
def instruct_generate(
|
|
@@ -42,17 +81,39 @@ def instruct_generate(
|
|
| 42 |
top_k: The number of top most probable tokens to consider in the sampling process.
|
| 43 |
temperature: A value controlling the randomness of the sampling process. Higher values result in more random
|
| 44 |
"""
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
print(output)
|
| 47 |
return output
|
| 48 |
|
| 49 |
# 配置具体参数
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
example_path = "example.json"
|
| 52 |
# 1024如果不够, 调整为512
|
| 53 |
max_seq_len = 1024
|
| 54 |
max_batch_size = 1
|
| 55 |
|
|
|
|
|
|
|
| 56 |
with open(example_path, 'r') as f:
|
| 57 |
content = f.read()
|
| 58 |
example_dict = json.loads(content)
|
|
|
|
| 2 |
import time
|
| 3 |
import warnings
|
| 4 |
from pathlib import Path
|
| 5 |
+
from typing import Optional
|
| 6 |
|
| 7 |
+
import lightning as L
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
# support running without installing as a package
|
| 11 |
+
wd = Path(__file__).parent.parent.resolve()
|
| 12 |
+
sys.path.append(str(wd))
|
| 13 |
+
|
| 14 |
+
from generate import generate
|
| 15 |
+
from lit_llama import Tokenizer
|
| 16 |
+
from lit_llama.adapter import LLaMA
|
| 17 |
+
from lit_llama.utils import EmptyInitOnDevice, lazy_load, llama_model_lookup
|
| 18 |
+
from scripts.prepare_alpaca import generate_prompt
|
| 19 |
|
| 20 |
# 配置hugface环境
|
| 21 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 25 |
import json
|
| 26 |
|
| 27 |
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
| 28 |
+
torch.set_float32_matmul_precision("high")
|
| 29 |
+
|
| 30 |
+
def model_load(
|
| 31 |
+
adapter_path: Path = Path("out/adapter/alpaca/lit-llama-adapter-finetuned_15k.pth"),
|
| 32 |
+
pretrained_path: Path = Path("checkpoints/lit-llama/7B/lit-llama.pth"),
|
| 33 |
+
quantize: Optional[str] = "llm.int8",
|
| 34 |
+
):
|
| 35 |
+
|
| 36 |
+
fabric = L.Fabric(devices=1)
|
| 37 |
+
dtype = torch.bfloat16 if fabric.device.type == "cuda" and torch.cuda.is_bf16_supported() else torch.float32
|
| 38 |
+
|
| 39 |
+
with lazy_load(pretrained_path) as pretrained_checkpoint, lazy_load(adapter_path) as adapter_checkpoint:
|
| 40 |
+
name = llama_model_lookup(pretrained_checkpoint)
|
| 41 |
|
| 42 |
+
with EmptyInitOnDevice(
|
| 43 |
+
device=fabric.device, dtype=dtype, quantization_mode=quantize
|
| 44 |
+
):
|
| 45 |
+
model = LLaMA.from_name(name)
|
| 46 |
+
|
| 47 |
+
# 1. Load the pretrained weights
|
| 48 |
+
model.load_state_dict(pretrained_checkpoint, strict=False)
|
| 49 |
+
# 2. Load the fine-tuned adapter weights
|
| 50 |
+
model.load_state_dict(adapter_checkpoint, strict=False)
|
| 51 |
+
|
| 52 |
+
model.eval()
|
| 53 |
+
model = fabric.setup_module(model)
|
| 54 |
+
|
| 55 |
+
return model
|
| 56 |
|
| 57 |
|
| 58 |
def instruct_generate(
|
|
|
|
| 81 |
top_k: The number of top most probable tokens to consider in the sampling process.
|
| 82 |
temperature: A value controlling the randomness of the sampling process. Higher values result in more random
|
| 83 |
"""
|
| 84 |
+
sample = {"instruction": prompt, "input": input}
|
| 85 |
+
prompt = generate_prompt(sample)
|
| 86 |
+
encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device)
|
| 87 |
+
# prompt_length = encoded.size(0)
|
| 88 |
+
|
| 89 |
+
y = generate(
|
| 90 |
+
model,
|
| 91 |
+
idx=encoded,
|
| 92 |
+
max_seq_length=max_new_tokens,
|
| 93 |
+
max_new_tokens=max_new_tokens,
|
| 94 |
+
temperature=temperature,
|
| 95 |
+
top_k=top_k,
|
| 96 |
+
eos_id=tokenizer.eos_id
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
output = tokenizer.decode(y)
|
| 100 |
+
output = output.split("### Response:")[1].strip()
|
| 101 |
print(output)
|
| 102 |
return output
|
| 103 |
|
| 104 |
# 配置具体参数
|
| 105 |
+
pretrained_path = hf_hub_download(
|
| 106 |
+
repo_id="xxw/tapa_model", filename="lit-llama.pth")
|
| 107 |
+
tokenizer_path = hf_hub_download(
|
| 108 |
+
repo_id="xxw/tapa_model", filename="tokenizer.model")
|
| 109 |
+
adapter_path = "lit-llama-adapter-finetuned_15k.pth"
|
| 110 |
example_path = "example.json"
|
| 111 |
# 1024如果不够, 调整为512
|
| 112 |
max_seq_len = 1024
|
| 113 |
max_batch_size = 1
|
| 114 |
|
| 115 |
+
model = model_load(adapter_path, pretrained_path)
|
| 116 |
+
tokenizer = Tokenizer(tokenizer_path)
|
| 117 |
with open(example_path, 'r') as f:
|
| 118 |
content = f.read()
|
| 119 |
example_dict = json.loads(content)
|