Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Load the classifier model
|
6 |
+
@st.cache_resource
|
7 |
+
def load_classifier():
|
8 |
+
return pipeline("image-classification", model="nateraw/vit-age-classifier")
|
9 |
+
|
10 |
+
classifier = load_classifier()
|
11 |
+
|
12 |
+
# Streamlit UI
|
13 |
+
st.title("Age Classifier App 🧑👵")
|
14 |
+
st.write("Upload an image to predict the age category.")
|
15 |
+
|
16 |
+
# Upload an image
|
17 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
18 |
+
|
19 |
+
if uploaded_file is not None:
|
20 |
+
# Load and display the image
|
21 |
+
image = Image.open(uploaded_file).convert("RGB")
|
22 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
23 |
+
|
24 |
+
# Classify the age
|
25 |
+
st.write("Classifying...")
|
26 |
+
results = classifier(image)
|
27 |
+
|
28 |
+
# Display results
|
29 |
+
st.subheader("Results:")
|
30 |
+
for result in results:
|
31 |
+
st.write(f"**{result['label']}** - Score: {result['score']:.4f}")
|