Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline | |
from PIL import Image | |
# Load the classifier model | |
def load_classifier(): | |
return pipeline("image-classification", model="nateraw/vit-age-classifier") | |
classifier = load_classifier() | |
# Streamlit UI | |
st.title("Age Classifier App π§π΅") | |
st.write("Upload an image to predict the age category.") | |
# Upload an image | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) | |
if uploaded_file is not None: | |
# Load and display the image | |
image = Image.open(uploaded_file).convert("RGB") | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Classify the age | |
st.write("Classifying...") | |
results = classifier(image) | |
# Get the label with the highest score | |
if results: | |
best_result = max(results, key=lambda x: x["score"]) | |
st.subheader("Predicted Age Category:") | |
st.write(f"π’ **{best_result['label']}** (Confidence: {best_result['score']:.4f})") | |