Spaces:
Running
Running
| import gradio as gr | |
| import json | |
| import pandas as pd | |
| from vocab import load_tokener | |
| from utils.zh_util import iter_vocab | |
| def tokenize(text, tokenizer_type, color_num=5): | |
| """ | |
| TODO: cache tokenizer | |
| """ | |
| print(f"入参:tokenize, {text}, {tokenizer_type}") | |
| pos_tokens = [] | |
| tokenizer = load_tokener(tokenizer_type) | |
| encoding = tokenizer.encode(text) | |
| table = [] | |
| for idx, token_id in enumerate(encoding): | |
| decode_text = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd" | |
| pos_tokens.extend([(decode_text, str(idx % color_num))]) | |
| # token "Byte": # 这是 utf-8编码吧? | |
| token = tokenizer.convert_ids_to_tokens([token_id])[0] | |
| if isinstance(token, bytes): | |
| try: | |
| token_str = token.decode("utf-8") | |
| except: | |
| token_str = token.decode("utf-8", errors="ignore") | |
| print("decode_error", tokenizer_type, token, token_str) | |
| token_bytes = token | |
| json_dumps = json.dumps(token_str) | |
| elif isinstance(token, str): | |
| token_str = token | |
| token_bytes = bytes(token_str, "utf-8") | |
| json_dumps = json.dumps(token_str) | |
| else: | |
| return | |
| # ⭐ | |
| table.append( | |
| {"TokenID": token_id, | |
| "Token": token_str, # utf-8解码后的字符串,为什么有些是 <0xE7>,表示什么?比如llama | |
| "Text": decode_text, # | |
| # "Bytes": token_bytes, # bytes类型在gradio前端页面被解码成字符串,比如 b'\xe4\xb8\xad' 仍然显示成 "中"。因此 str(token_bytes) | |
| "Bytes": str(token_bytes), | |
| # "Unicode": json_dumps # unicode, 如果是ascii码,就直接显示。如果不是ascii码,就显示unicode | |
| } | |
| ) | |
| table_df = pd.DataFrame(table) | |
| print(f"Tokenization[{tokenizer_type}]: {table}") | |
| # print(table_df) | |
| return gr.update(value=pos_tokens, label=f"Tokens: {len(encoding)}"), table_df | |
| def tokenize_pair(text, tokenizer_type_1, tokenizer_type_2): | |
| pos_tokens_1, table_df_1 = tokenize(text, tokenizer_type_1) | |
| pos_tokens_2, table_df_2 = tokenize(text, tokenizer_type_2) | |
| return pos_tokens_1, table_df_1, pos_tokens_2, table_df_2 | |
| def basic_count(tokenizer_type): | |
| tokenizer = load_tokener(tokenizer_type) | |
| stats = iter_vocab(tokenizer, tokenizer_type) | |
| return tokenizer.vocab_size, f'{stats["中文汉字数"]["中文单字"]}/{stats["中文汉字数"]["中文多字"]}' | |
| def get_overlap_token_size(tokenizer_type_1, tokenizer_type_2): | |
| tokenizer1 = load_tokener(tokenizer_type_1) | |
| tokenizer2 = load_tokener(tokenizer_type_2) | |
| vocab1 = tokenizer1.get_vocab() | |
| vocab2 = tokenizer2.get_vocab() | |
| overlap_tokens = vocab1.keys() & vocab2.keys() | |
| overlap_token_size = len(overlap_tokens) | |
| print(f"OverlapTokens: {tokenizer_type_1}, {tokenizer_type_2} {list(overlap_tokens)[:10]}") | |
| return overlap_token_size, overlap_token_size | |
| def test_coding(): | |
| bytes1 = b'\xe4\xb8\xad' | |
| print(bytes1) # b'\xe4\xb8\xad' | |
| if __name__ == "__main__": | |
| print(basic_count("internlm_chat_7b")) |