""" https://github.com/abetlen/llama-cpp-python/blob/main/examples/gradio_chat/local.py https://github.com/awinml/llama-cpp-python-bindings python convert_hf_to_gguf.py --outtype f16 Qwen1.5-0.5B-Chat python convert_hf_to_gguf.py /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/ ./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -p "I believe the meaning of life is" -n 128 ./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -f prompt.txt -n 128 ./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -p "You are a helpful assistant" -cnv """ import json from simulator import Simulator import llama_cpp # import llama_cpp.llama_tokenizer from transformers import AutoTokenizer from log_util import logger class Qwen2Simulator(Simulator): def __init__(self, from_local=False): if from_local: self.hf_tokenizer = AutoTokenizer.from_pretrained( "/workspace/xusong/huggingface/models/Qwen2-0.5B-Instruct/") self.llm = llama_cpp.Llama( model_path="/workspace/xusong/huggingface/models/Qwen2-0.5B-Instruct-GGUF/qwen2-0_5b-instruct-fp16.gguf", tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer(self.hf_tokenizer), verbose=False, ) else: self.hf_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct") self.llm = llama_cpp.Llama.from_pretrained( repo_id="Qwen/Qwen2-0.5B-Instruct-GGUF", filename="*fp16.gguf", tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer(self.hf_tokenizer), verbose=False, ) logger.info(f"llm has been initialized: {self.llm}") # warmup ### local def generate_query(self, messages): """ :param messages: :return: """ assert messages[-1]["role"] != "user" logger.info(f"generating {json.dumps(messages)}") inputs = self.hf_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=False, ) inputs = inputs + "<|im_start|>user\n" return self._generate(inputs) # for new_text in self._stream_generate(input_ids): # yield new_text def generate_response(self, messages): assert messages[-1]["role"] == "user" logger.info(f"generating {json.dumps(messages)}") inputs = self.hf_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) return self._generate(inputs) # for new_text in self._stream_generate(input_ids): # yield new_text def _generate(self, inputs): """ qwen2-0.5b-chat 有bug:有时user生成结束没有<|im_end|>,示例: <|im_start|>system you are a helpful assistant<|im_end|> <|im_start|>user hi, what your name<|im_end|> <|im_start|>assistant My name is Jordan<|im_end|> <|im_start|>user # 以上是输入,以下是生成 how old are you? <|im_start|>assistant I am a 41-year-old man.<|im_end|> """ # stream=False output = self.llm( inputs, max_tokens=20, temperature=5, stop=["<|im_end|>", "<|im_start|>"] ) output_text = output["choices"][0]["text"] return output_text bot = Qwen2Simulator() if __name__ == "__main__": # messages = [ # {"role": "system", "content": "you are a helpful assistant"}, # {"role": "user", "content": "What is the capital of France?"} # ] # output = bot.generate_response(messages) # print(output) messages = [ {"role": "system", "content": "you are a helpful assistant"}, {"role": "user", "content": "hi, what your name"}, {"role": "assistant", "content": "My name is Jordan"} ] output = bot.generate_query(messages) print(output)