xu song
commited on
Commit
·
b099d9e
1
Parent(s):
b420ebd
update
Browse files- app.py +14 -7
- app_util.py +16 -21
- models/cpp_qwen2.py +38 -49
app.py
CHANGED
|
@@ -14,9 +14,15 @@ system_list = [
|
|
| 14 |
]
|
| 15 |
|
| 16 |
user_simulator_doc = """\
|
|
|
|
|
|
|
|
|
|
| 17 |
There are maily two types of user simulator:
|
| 18 |
- prompt-based user-simulator (role-play)
|
| 19 |
- model-based user-simulator
|
|
|
|
|
|
|
|
|
|
| 20 |
"""
|
| 21 |
|
| 22 |
with gr.Blocks() as demo:
|
|
@@ -101,16 +107,17 @@ with gr.Blocks() as demo:
|
|
| 101 |
)
|
| 102 |
|
| 103 |
########
|
| 104 |
-
history = gr.State([{"role": "system", "content": system_list[0]}])
|
| 105 |
-
|
| 106 |
-
|
|
|
|
| 107 |
|
| 108 |
-
generate_btn.click(generate, [chatbot, history], outputs=[generated_text_1, chatbot, history],
|
| 109 |
show_progress="full")
|
| 110 |
-
retry_btn.click(undo_generate, [chatbot, history], outputs=[generated_text_1, chatbot, history]) \
|
| 111 |
-
.then(generate, [chatbot, history], outputs=[generated_text_1, chatbot, history],
|
| 112 |
show_progress="full")
|
| 113 |
-
undo_btn.click(undo_generate, [chatbot, history], outputs=[generated_text_1, chatbot, history])
|
| 114 |
|
| 115 |
slider_max_tokens.change(set_max_tokens, inputs=[slider_max_tokens])
|
| 116 |
slider_temperature.change(set_temperature, inputs=[slider_temperature])
|
|
|
|
| 14 |
]
|
| 15 |
|
| 16 |
user_simulator_doc = """\
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
There are maily two types of user simulator:
|
| 21 |
- prompt-based user-simulator (role-play)
|
| 22 |
- model-based user-simulator
|
| 23 |
+
|
| 24 |
+
In most cases, large language models (LLMs) are used to serve as assistant generator.
|
| 25 |
+
Besides, it can also used as user simulator.
|
| 26 |
"""
|
| 27 |
|
| 28 |
with gr.Blocks() as demo:
|
|
|
|
| 107 |
)
|
| 108 |
|
| 109 |
########
|
| 110 |
+
history = gr.State([{"role": "system", "content": system_list[0]}]) # 有用信息只有个system,其他和chatbot内容重叠
|
| 111 |
+
history_tokens = gr.State([])
|
| 112 |
+
system.change(reset_state, inputs=[system], outputs=[chatbot, history, history_tokens])
|
| 113 |
+
clear_btn.click(reset_state, inputs=[system], outputs=[chatbot, history, history_tokens])
|
| 114 |
|
| 115 |
+
generate_btn.click(generate, [chatbot, history, history_tokens], outputs=[generated_text_1, chatbot, history, history_tokens],
|
| 116 |
show_progress="full")
|
| 117 |
+
retry_btn.click(undo_generate, [chatbot, history, history_tokens], outputs=[generated_text_1, chatbot, history, history_tokens]) \
|
| 118 |
+
.then(generate, [chatbot, history, history_tokens], outputs=[generated_text_1, chatbot, history, history_tokens],
|
| 119 |
show_progress="full")
|
| 120 |
+
undo_btn.click(undo_generate, [chatbot, history, history_tokens], outputs=[generated_text_1, chatbot, history, history_tokens])
|
| 121 |
|
| 122 |
slider_max_tokens.change(set_max_tokens, inputs=[slider_max_tokens])
|
| 123 |
slider_temperature.change(set_temperature, inputs=[slider_temperature])
|
app_util.py
CHANGED
|
@@ -19,54 +19,49 @@ from models.cpp_qwen2 import bot
|
|
| 19 |
# gr.Chatbot.postprocess = postprocess
|
| 20 |
|
| 21 |
|
| 22 |
-
def generate_query(chatbot, history):
|
| 23 |
if history and history[-1]["role"] == "user":
|
| 24 |
gr.Warning('You should generate assistant-response.')
|
| 25 |
yield None, chatbot, history
|
| 26 |
else:
|
| 27 |
chatbot.append(None)
|
| 28 |
-
streamer = bot.generate_query(history, stream=True)
|
| 29 |
-
for query in streamer:
|
| 30 |
chatbot[-1] = (query, None)
|
| 31 |
yield query, chatbot, history
|
| 32 |
history.append({"role": "user", "content": query})
|
| 33 |
-
yield query, chatbot, history
|
| 34 |
|
| 35 |
|
| 36 |
-
def generate_response(chatbot, history,
|
| 37 |
"""
|
| 38 |
auto-mode:query is None
|
| 39 |
manual-mode:query 是用户输入
|
| 40 |
-
:param chatbot:
|
| 41 |
-
:param history:
|
| 42 |
-
:return:
|
| 43 |
"""
|
| 44 |
-
|
| 45 |
-
history.append({"role": "user", "content": user_input})
|
| 46 |
query = history[-1]["content"]
|
| 47 |
-
|
| 48 |
if history[-1]["role"] != "user":
|
| 49 |
gr.Warning('You should generate or type user-input first.')
|
| 50 |
yield None, chatbot, history
|
| 51 |
else:
|
| 52 |
-
streamer = bot.generate_response(history, stream=True)
|
| 53 |
-
for response in streamer:
|
| 54 |
chatbot[-1] = (query, response)
|
| 55 |
-
yield response, chatbot, history
|
| 56 |
|
| 57 |
history.append({"role": "assistant", "content": response})
|
| 58 |
print(f"chatbot is {chatbot}")
|
| 59 |
print(f"history is {history}")
|
| 60 |
-
yield response, chatbot, history
|
| 61 |
|
| 62 |
|
| 63 |
-
def generate(chatbot, history):
|
| 64 |
logger.info(f"chatbot: {chatbot}; history: {history}")
|
| 65 |
streamer = None
|
| 66 |
if history[-1]["role"] in ["assistant", "system"]:
|
| 67 |
-
streamer = generate_query(chatbot, history)
|
| 68 |
elif history[-1]["role"] == "user":
|
| 69 |
-
streamer = generate_response(chatbot, history)
|
| 70 |
else:
|
| 71 |
gr.Warning("bug")
|
| 72 |
|
|
@@ -74,7 +69,7 @@ def generate(chatbot, history):
|
|
| 74 |
yield out
|
| 75 |
|
| 76 |
|
| 77 |
-
def undo_generate(chatbot, history):
|
| 78 |
if history[-1]["role"] == "user":
|
| 79 |
history = history[:-1]
|
| 80 |
chatbot = chatbot[:-1]
|
|
@@ -84,7 +79,7 @@ def undo_generate(chatbot, history):
|
|
| 84 |
else:
|
| 85 |
pass
|
| 86 |
logger.info(f"after undo, {json.dumps(chatbot, ensure_ascii=False)}, {json.dumps(history, ensure_ascii=False)}")
|
| 87 |
-
return "", chatbot, history
|
| 88 |
|
| 89 |
|
| 90 |
def reset_user_input():
|
|
@@ -92,7 +87,7 @@ def reset_user_input():
|
|
| 92 |
|
| 93 |
|
| 94 |
def reset_state(system):
|
| 95 |
-
return [], [{"role": "system", "content": system}]
|
| 96 |
|
| 97 |
|
| 98 |
def set_max_tokens(max_tokens):
|
|
|
|
| 19 |
# gr.Chatbot.postprocess = postprocess
|
| 20 |
|
| 21 |
|
| 22 |
+
def generate_query(chatbot, history, history_tokens):
|
| 23 |
if history and history[-1]["role"] == "user":
|
| 24 |
gr.Warning('You should generate assistant-response.')
|
| 25 |
yield None, chatbot, history
|
| 26 |
else:
|
| 27 |
chatbot.append(None)
|
| 28 |
+
streamer = bot.generate_query(history[-1], history_tokens, stream=True)
|
| 29 |
+
for query, all_tokens in streamer:
|
| 30 |
chatbot[-1] = (query, None)
|
| 31 |
yield query, chatbot, history
|
| 32 |
history.append({"role": "user", "content": query})
|
| 33 |
+
yield query, chatbot, history, all_tokens
|
| 34 |
|
| 35 |
|
| 36 |
+
def generate_response(chatbot, history, history_tokens):
|
| 37 |
"""
|
| 38 |
auto-mode:query is None
|
| 39 |
manual-mode:query 是用户输入
|
|
|
|
|
|
|
|
|
|
| 40 |
"""
|
| 41 |
+
logger.info(f"generating {json.dumps(history, ensure_ascii=False)}")
|
|
|
|
| 42 |
query = history[-1]["content"]
|
|
|
|
| 43 |
if history[-1]["role"] != "user":
|
| 44 |
gr.Warning('You should generate or type user-input first.')
|
| 45 |
yield None, chatbot, history
|
| 46 |
else:
|
| 47 |
+
streamer = bot.generate_response(history[-1], history_tokens, stream=True)
|
| 48 |
+
for response, all_tokens in streamer:
|
| 49 |
chatbot[-1] = (query, response)
|
| 50 |
+
yield response, chatbot, history, all_tokens
|
| 51 |
|
| 52 |
history.append({"role": "assistant", "content": response})
|
| 53 |
print(f"chatbot is {chatbot}")
|
| 54 |
print(f"history is {history}")
|
| 55 |
+
yield response, chatbot, history, all_tokens
|
| 56 |
|
| 57 |
|
| 58 |
+
def generate(chatbot, history, history_tokens):
|
| 59 |
logger.info(f"chatbot: {chatbot}; history: {history}")
|
| 60 |
streamer = None
|
| 61 |
if history[-1]["role"] in ["assistant", "system"]:
|
| 62 |
+
streamer = generate_query(chatbot, history, history_tokens)
|
| 63 |
elif history[-1]["role"] == "user":
|
| 64 |
+
streamer = generate_response(chatbot, history, history_tokens)
|
| 65 |
else:
|
| 66 |
gr.Warning("bug")
|
| 67 |
|
|
|
|
| 69 |
yield out
|
| 70 |
|
| 71 |
|
| 72 |
+
def undo_generate(chatbot, history, history_tokens):
|
| 73 |
if history[-1]["role"] == "user":
|
| 74 |
history = history[:-1]
|
| 75 |
chatbot = chatbot[:-1]
|
|
|
|
| 79 |
else:
|
| 80 |
pass
|
| 81 |
logger.info(f"after undo, {json.dumps(chatbot, ensure_ascii=False)}, {json.dumps(history, ensure_ascii=False)}")
|
| 82 |
+
return "", chatbot, history, history_tokens
|
| 83 |
|
| 84 |
|
| 85 |
def reset_user_input():
|
|
|
|
| 87 |
|
| 88 |
|
| 89 |
def reset_state(system):
|
| 90 |
+
return [], [{"role": "system", "content": system}], []
|
| 91 |
|
| 92 |
|
| 93 |
def set_max_tokens(max_tokens):
|
models/cpp_qwen2.py
CHANGED
|
@@ -36,14 +36,14 @@ import config
|
|
| 36 |
|
| 37 |
class Qwen2Simulator(Simulator):
|
| 38 |
|
| 39 |
-
def __init__(self
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
"/workspace/xusong/huggingface/models/Qwen2-0.5B-Instruct/")
|
| 43 |
-
self.llm = llama_cpp.Llama( # n_ctx, n_threads
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
n_ctx=config.MAX_SEQUENCE_LENGTH, #
|
| 48 |
# n_threads=None, # 默认会根据cpu数来设置 n_threads
|
| 49 |
use_mlock=True,
|
|
@@ -54,7 +54,6 @@ class Qwen2Simulator(Simulator):
|
|
| 54 |
self.llm = llama_cpp.Llama.from_pretrained(
|
| 55 |
repo_id="Qwen/Qwen2-0.5B-Instruct-GGUF",
|
| 56 |
filename="*fp16.gguf",
|
| 57 |
-
tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer(self.hf_tokenizer),
|
| 58 |
n_ctx=config.MAX_SEQUENCE_LENGTH,
|
| 59 |
use_mlock=True,
|
| 60 |
verbose=False,
|
|
@@ -77,68 +76,58 @@ class Qwen2Simulator(Simulator):
|
|
| 77 |
],
|
| 78 |
)
|
| 79 |
|
| 80 |
-
def
|
|
|
|
|
|
|
|
|
|
| 81 |
"""
|
| 82 |
-
:param messages:
|
| 83 |
-
:return:
|
| 84 |
"""
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
)
|
| 92 |
-
inputs = inputs + "<|im_start|>user\n"
|
| 93 |
if stream:
|
| 94 |
-
return self._stream_generate(
|
| 95 |
else:
|
| 96 |
-
return self._generate(
|
| 97 |
-
|
| 98 |
-
def generate_response(self,
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
inputs = self.hf_tokenizer.apply_chat_template(
|
| 102 |
-
messages,
|
| 103 |
-
tokenize=False,
|
| 104 |
-
add_generation_prompt=True
|
| 105 |
)
|
| 106 |
if stream:
|
| 107 |
-
return self._stream_generate(
|
| 108 |
else:
|
| 109 |
-
return self._generate(
|
| 110 |
-
|
| 111 |
-
def _generate(self, inputs):
|
| 112 |
-
logger.info(f"generation_kwargs {self.generation_kwargs}")
|
| 113 |
-
output = self.llm(
|
| 114 |
-
inputs,
|
| 115 |
-
**self.generation_kwargs
|
| 116 |
-
)
|
| 117 |
-
output_text = output["choices"][0]["text"]
|
| 118 |
-
return output_text
|
| 119 |
|
| 120 |
-
def _stream_generate(self,
|
| 121 |
logger.info(f"generation_kwargs {self.generation_kwargs}")
|
| 122 |
|
| 123 |
# self.llm.generate .set_cache .last_n_tokens_size .reset .ctx ._ctx
|
| 124 |
-
output = self.llm(
|
| 125 |
-
|
| 126 |
stream=True,
|
| 127 |
**self.generation_kwargs
|
| 128 |
)
|
| 129 |
-
|
| 130 |
-
|
| 131 |
generated_text = ""
|
| 132 |
# TODO: 检测finish reason,如果是length,则shift,并继续生成。
|
|
|
|
| 133 |
for out in output:
|
| 134 |
stream = copy.deepcopy(out)
|
| 135 |
-
if stream["choices"][0]["finish_reason"] is
|
| 136 |
generated_text += stream["choices"][0]["text"]
|
| 137 |
-
if "
|
| 138 |
-
yield stream["choices"][0]["
|
| 139 |
else:
|
| 140 |
-
logger.info("
|
| 141 |
-
yield generated_text
|
| 142 |
|
| 143 |
|
| 144 |
bot = Qwen2Simulator()
|
|
|
|
| 36 |
|
| 37 |
class Qwen2Simulator(Simulator):
|
| 38 |
|
| 39 |
+
def __init__(self):
|
| 40 |
+
self.hf_tokenizer = AutoTokenizer.from_pretrained(
|
| 41 |
+
"/workspace/xusong/huggingface/models/Qwen2-0.5B-Instruct/")
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
local_path = "/workspace/xusong/huggingface/models/Qwen2-0.5B-Instruct-GGUF/qwen2-0_5b-instruct-fp16.gguf"
|
| 44 |
+
if os.path.exists(local_path):
|
| 45 |
+
self.llm = llama_cpp.Llama( # n_ctx, n_threads
|
| 46 |
+
model_path=local_path,
|
| 47 |
n_ctx=config.MAX_SEQUENCE_LENGTH, #
|
| 48 |
# n_threads=None, # 默认会根据cpu数来设置 n_threads
|
| 49 |
use_mlock=True,
|
|
|
|
| 54 |
self.llm = llama_cpp.Llama.from_pretrained(
|
| 55 |
repo_id="Qwen/Qwen2-0.5B-Instruct-GGUF",
|
| 56 |
filename="*fp16.gguf",
|
|
|
|
| 57 |
n_ctx=config.MAX_SEQUENCE_LENGTH,
|
| 58 |
use_mlock=True,
|
| 59 |
verbose=False,
|
|
|
|
| 76 |
],
|
| 77 |
)
|
| 78 |
|
| 79 |
+
def tokenize(self, text):
|
| 80 |
+
return self.llm.tokenize(text.encode("utf-8"))
|
| 81 |
+
|
| 82 |
+
def generate_query(self, message, history_tokens, stream=True):
|
| 83 |
"""
|
|
|
|
|
|
|
| 84 |
"""
|
| 85 |
+
# {% for message in messages %}
|
| 86 |
+
# {% if loop.first and messages[0]['role'] != 'system' %}
|
| 87 |
+
# {{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}
|
| 88 |
+
# {% endif %}
|
| 89 |
+
# {{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}
|
| 90 |
+
# {% endfor %}
|
| 91 |
+
# {% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
| 92 |
+
|
| 93 |
+
input_ids = history_tokens + self.tokenize(
|
| 94 |
+
f"<|im_start|>{message['role']}\n{message['content']}<|im_end|>\n<|im_start|>user\n"
|
| 95 |
)
|
|
|
|
| 96 |
if stream:
|
| 97 |
+
return self._stream_generate(input_ids)
|
| 98 |
else:
|
| 99 |
+
return self._generate(input_ids)
|
| 100 |
+
|
| 101 |
+
def generate_response(self, message, history_tokens, stream=True):
|
| 102 |
+
input_ids = history_tokens + self.tokenize(
|
| 103 |
+
f"<|im_start|>{message['role']}\n{message['content']}<|im_end|>\n<|im_start|>assistant\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
)
|
| 105 |
if stream:
|
| 106 |
+
return self._stream_generate(input_ids)
|
| 107 |
else:
|
| 108 |
+
return self._generate(input_ids)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
def _stream_generate(self, input_ids):
|
| 111 |
logger.info(f"generation_kwargs {self.generation_kwargs}")
|
| 112 |
|
| 113 |
# self.llm.generate .set_cache .last_n_tokens_size .reset .ctx ._ctx
|
| 114 |
+
output = self.llm.create_completion(
|
| 115 |
+
input_ids,
|
| 116 |
stream=True,
|
| 117 |
**self.generation_kwargs
|
| 118 |
)
|
|
|
|
|
|
|
| 119 |
generated_text = ""
|
| 120 |
# TODO: 检测finish reason,如果是length,则shift,并继续生成。
|
| 121 |
+
# TODO: 返回 token_id,
|
| 122 |
for out in output:
|
| 123 |
stream = copy.deepcopy(out)
|
| 124 |
+
if stream["choices"][0]["finish_reason"] is None:
|
| 125 |
generated_text += stream["choices"][0]["text"]
|
| 126 |
+
if "completion_text" in stream["choices"][0]:
|
| 127 |
+
yield stream["choices"][0]["completion_text"], stream["choices"][0]["all_tokens"]
|
| 128 |
else:
|
| 129 |
+
logger.info("completion_text not found")
|
| 130 |
+
yield generated_text, None
|
| 131 |
|
| 132 |
|
| 133 |
bot = Qwen2Simulator()
|