File size: 6,528 Bytes
a1f93e9
d72c532
 
 
8988bbf
 
 
 
d72c532
 
 
 
 
 
 
8988bbf
 
 
 
 
a1f93e9
d72c532
 
 
e74047c
 
d72c532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f93e9
 
d72c532
8988bbf
 
d72c532
e74047c
d72c532
e74047c
 
 
 
 
 
 
d72c532
8988bbf
e74047c
a1f93e9
8988bbf
d72c532
 
8988bbf
 
d72c532
 
 
 
 
8988bbf
 
a1f93e9
8988bbf
 
d72c532
a1f93e9
8988bbf
 
d72c532
8988bbf
d72c532
 
 
a1f93e9
 
8988bbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72c532
 
 
 
8988bbf
 
 
d72c532
8988bbf
 
 
 
 
 
 
a1f93e9
 
d72c532
a1f93e9
d72c532
8988bbf
 
 
 
 
 
 
 
 
 
d72c532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8988bbf
 
 
d72c532
 
8988bbf
d72c532
 
8988bbf
d72c532
8988bbf
 
d72c532
e74047c
 
d72c532
8988bbf
 
d72c532
 
 
 
 
 
 
 
e74047c
d72c532
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
来自 https://github.com/OpenLMLab/MOSS/blob/main/moss_web_demo_gradio.py


# 难点



# 单卡报错
python moss_web_demo_gradio.py --model_name fnlp/moss-moon-003-sft --gpu 0,1,2,3

# TODO
- 第一句:
- 代码和表格的预览
- 可编辑chatbot:https://github.com/gradio-app/gradio/issues/4444
- 一个button,

## Reference

-
"""


import gradio as gr
from models.hf_qwen2 import bot
# from models.cpp_qwen2 import bot


#
# def postprocess(self, y):
#     if y is None:
#         return []
#     for i, (message, response) in enumerate(y):
#         y[i] = (
#             None if message is None else mdtex2html.convert((message)),
#             None if response is None else mdtex2html.convert(response),
#         )
#     return y
#
#
# gr.Chatbot.postprocess = postprocess


def parse_text(text):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", "\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text


def generate_query(chatbot, history):
    if history and history[-1]["role"] == "user":  # 该生成response了
        gr.Warning('You should generate assistant-response.')
        return None, chatbot, history
    streamer = bot.generate_query(history)
    # chatbot.append((query, ""))

    query = ""
    for new_text in streamer:
        print(new_text)
        query += new_text
        yield query, chatbot, history

    chatbot.append((query, None))
    history.append({"role": "user", "content": query})
    yield query, chatbot, history


def generate_response(query, chatbot, history):
    """
    自动模式下:query is None
    人工模式下:query 是用户输入
    :param query:
    :param chatbot:
    :param history:
    :return:
    """
    if query and history[-1]["role"] != "user":
        history.append({"role": "user", "content": query})

    if history[-1]["role"] != "user":
        gr.Warning('You should generate or type user-input first.')
        return chatbot, history

    response = bot.generate_response(history)
    query = history[-1]["content"]
    chatbot[-1] = (query, response)
    history.append({"role": "assistant", "content": response})
    print(f"chatbot is {chatbot}")
    print(f"history is {history}")
    return chatbot, history


def generate():
    """

    :return:
    """
    pass


def regenerate():
    """
    删除上一轮,重新生成。
    :return:
    """
    pass


def reset_user_input():
    return gr.update(value='')


def reset_state(system):
    return [], [{"role": "system", "content": system}]


system_list = [
    "You are a helpful assistant.",
    "你是一个导游。",
    "你是一个英语老师。",
    "你是一个程序员。",
    "你是一个心理咨询师。",
]

"""
TODO: 使用说明
"""
with gr.Blocks() as demo:
    # Knowledge Distillation through Self Chatting
    gr.HTML("""<h1 align="center">Distilling the Knowledge through Self Chatting</h1>""")
    system = gr.Dropdown(
        choices=system_list,
        value=system_list[0],
        allow_custom_value=True,
        interactive=True,
        label="System message"
    )
    chatbot = gr.Chatbot(avatar_images=("assets/man.png", "assets/bot.png"))
    with gr.Row():
        with gr.Column(scale=4):
            user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10)
            with gr.Row():
                generate_query_btn = gr.Button("生成问题")
                regen_btn = gr.Button("🤔️ Regenerate (重试)")
                submit_btn = gr.Button("生成回复", variant="primary")
                stop_btn = gr.Button("停止生成", variant="primary")
                empty_btn = gr.Button("🧹 Clear History (清除历史)")
        with gr.Column(scale=1):
            # generate_query_btn = gr.Button("Generate First Query")

            clear_btn = gr.Button("重置")
            gr.Dropdown(
                ["moss", "chatglm-2", "chatpdf"],
                value="moss",
                label="问题生成器",
                # info="Will add more animals later!"
            ),
            gr.Dropdown(
                ["moss", "chatglm-2", "gpt3.5-turbo"],
                value="gpt3.5-turbo",
                label="回复生成器",
                # info="Will add more animals later!"
            ),

    history = gr.State([{"role": "system", "content": system_list[0]}])

    system.change(reset_state, inputs=[system], outputs=[chatbot, history], show_progress="full")

    submit_btn.click(generate_response, [user_input, chatbot, history], [chatbot, history],
                     show_progress="full")
    # submit_btn.click(reset_user_input, [], [user_input])

    clear_btn.click(reset_state, inputs=[system], outputs=[chatbot, history], show_progress="full")

    generate_query_btn.click(generate_query, [chatbot, history], outputs=[user_input, chatbot, history],
                             show_progress="full")

    # generate_query_btn.

    gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
    gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature",
              info="Larger temperature increase the randomness"),
    gr.Slider(
        minimum=0.1,
        maximum=1.0,
        value=0.95,
        step=0.05,
        label="Top-p (nucleus sampling)",
    ),

demo.queue().launch(share=False, server_name="0.0.0.0")
# demo.queue().launch(share=True)