Spaces:
Runtime error
Runtime error
import json | |
from pathlib import Path | |
import gradio as gr | |
from transformers import ( | |
AutoTokenizer, | |
BertForSequenceClassification, | |
TextClassificationPipeline, | |
) | |
labels = [ | |
'agency', | |
# 'humanComparison', | |
# 'hyperbole', | |
# 'historyComparison', | |
# 'unjustClaims', | |
# 'deepSounding', | |
# 'skeptics', | |
# 'deEmphasize', | |
# 'performanceNumber', | |
# 'inscrutable', | |
# 'objective' | |
] | |
models = {} | |
pipes = {} | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") | |
for label in labels: | |
models[label] = BertForSequenceClassification.from_pretrained( | |
f'xt0r3/aihype_{label}-vs-rest', | |
) | |
pipe = TextClassificationPipeline( | |
model=models[label], tokenizer=tokenizer, return_all_scores=True | |
) | |
def predict(text): | |
preds = { | |
label: pipe[label][0][1] for label in labels | |
} | |
return preds | |
examples = [ | |
"Machine Learning is at the forefront of education, replacing human jobs", | |
"AI model leaves scientists confused", | |
"This model is not really cool", | |
] | |
intf = gr.Interface(fn=predict, inputs="textbox", | |
outputs="label", examples=examples) | |
intf.launch(inline=False) | |