Spaces:
Running
Running
| ''' | |
| Downloads models from Hugging Face to models/username_modelname. | |
| Example: | |
| python download-model.py facebook/opt-1.3b | |
| ''' | |
| import argparse | |
| import base64 | |
| import datetime | |
| import hashlib | |
| import json | |
| import os | |
| import re | |
| import sys | |
| from pathlib import Path | |
| import requests | |
| import tqdm | |
| from requests.adapters import HTTPAdapter | |
| from tqdm.contrib.concurrent import thread_map | |
| base = "https://huggingface.co" | |
| class ModelDownloader: | |
| def __init__(self, max_retries=5): | |
| self.session = requests.Session() | |
| if max_retries: | |
| self.session.mount('https://cdn-lfs.huggingface.co', HTTPAdapter(max_retries=max_retries)) | |
| self.session.mount('https://huggingface.co', HTTPAdapter(max_retries=max_retries)) | |
| if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None: | |
| self.session.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS')) | |
| if os.getenv('HF_TOKEN') is not None: | |
| self.session.headers = {'authorization': f'Bearer {os.getenv("HF_TOKEN")}'} | |
| def sanitize_model_and_branch_names(self, model, branch): | |
| if model[-1] == '/': | |
| model = model[:-1] | |
| if model.startswith(base + '/'): | |
| model = model[len(base) + 1:] | |
| model_parts = model.split(":") | |
| model = model_parts[0] if len(model_parts) > 0 else model | |
| branch = model_parts[1] if len(model_parts) > 1 else branch | |
| if branch is None: | |
| branch = "main" | |
| else: | |
| pattern = re.compile(r"^[a-zA-Z0-9._-]+$") | |
| if not pattern.match(branch): | |
| raise ValueError( | |
| "Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.") | |
| return model, branch | |
| def get_download_links_from_huggingface(self, model, branch, text_only=False, specific_file=None): | |
| page = f"/api/models/{model}/tree/{branch}" | |
| cursor = b"" | |
| links = [] | |
| sha256 = [] | |
| classifications = [] | |
| has_pytorch = False | |
| has_pt = False | |
| has_gguf = False | |
| has_safetensors = False | |
| is_lora = False | |
| while True: | |
| url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "") | |
| r = self.session.get(url, timeout=10) | |
| r.raise_for_status() | |
| content = r.content | |
| dict = json.loads(content) | |
| if len(dict) == 0: | |
| break | |
| for i in range(len(dict)): | |
| fname = dict[i]['path'] | |
| if specific_file not in [None, ''] and fname != specific_file: | |
| continue | |
| if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')): | |
| is_lora = True | |
| is_pytorch = re.match(r"(pytorch|adapter|gptq)_model.*\.bin", fname) | |
| is_safetensors = re.match(r".*\.safetensors", fname) | |
| is_pt = re.match(r".*\.pt", fname) | |
| is_gguf = re.match(r'.*\.gguf', fname) | |
| is_tiktoken = re.match(r".*\.tiktoken", fname) | |
| is_tokenizer = re.match(r"(tokenizer|ice|spiece).*\.model", fname) or is_tiktoken | |
| is_text = re.match(r".*\.(txt|json|py|md)", fname) or is_tokenizer | |
| if any((is_pytorch, is_safetensors, is_pt, is_gguf, is_tokenizer, is_text)): | |
| if 'lfs' in dict[i]: | |
| sha256.append([fname, dict[i]['lfs']['oid']]) | |
| if is_text: | |
| links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") | |
| classifications.append('text') | |
| continue | |
| if not text_only: | |
| links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}") | |
| if is_safetensors: | |
| has_safetensors = True | |
| classifications.append('safetensors') | |
| elif is_pytorch: | |
| has_pytorch = True | |
| classifications.append('pytorch') | |
| elif is_pt: | |
| has_pt = True | |
| classifications.append('pt') | |
| elif is_gguf: | |
| has_gguf = True | |
| classifications.append('gguf') | |
| cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50' | |
| cursor = base64.b64encode(cursor) | |
| cursor = cursor.replace(b'=', b'%3D') | |
| # If both pytorch and safetensors are available, download safetensors only | |
| if (has_pytorch or has_pt) and has_safetensors: | |
| for i in range(len(classifications) - 1, -1, -1): | |
| if classifications[i] in ['pytorch', 'pt']: | |
| links.pop(i) | |
| # For GGUF, try to download only the Q4_K_M if no specific file is specified. | |
| # If not present, exclude all GGUFs, as that's likely a repository with both | |
| # GGUF and fp16 files. | |
| if has_gguf and specific_file is None: | |
| has_q4km = False | |
| for i in range(len(classifications) - 1, -1, -1): | |
| if 'q4_k_m' in links[i].lower(): | |
| has_q4km = True | |
| if has_q4km: | |
| for i in range(len(classifications) - 1, -1, -1): | |
| if 'q4_k_m' not in links[i].lower(): | |
| links.pop(i) | |
| else: | |
| for i in range(len(classifications) - 1, -1, -1): | |
| if links[i].lower().endswith('.gguf'): | |
| links.pop(i) | |
| is_llamacpp = has_gguf and specific_file is not None | |
| return links, sha256, is_lora, is_llamacpp | |
| def get_output_folder(self, model, branch, is_lora, is_llamacpp=False, base_folder=None): | |
| if base_folder is None: | |
| base_folder = 'models' if not is_lora else 'loras' | |
| # If the model is of type GGUF, save directly in the base_folder | |
| if is_llamacpp: | |
| return Path(base_folder) | |
| output_folder = f"{'_'.join(model.split('/')[-2:])}" | |
| if branch != 'main': | |
| output_folder += f'_{branch}' | |
| output_folder = Path(base_folder) / output_folder | |
| return output_folder | |
| def get_single_file(self, url, output_folder, start_from_scratch=False): | |
| filename = Path(url.rsplit('/', 1)[1]) | |
| output_path = output_folder / filename | |
| headers = {} | |
| mode = 'wb' | |
| if output_path.exists() and not start_from_scratch: | |
| # Check if the file has already been downloaded completely | |
| r = self.session.get(url, stream=True, timeout=10) | |
| total_size = int(r.headers.get('content-length', 0)) | |
| if output_path.stat().st_size >= total_size: | |
| return | |
| # Otherwise, resume the download from where it left off | |
| headers = {'Range': f'bytes={output_path.stat().st_size}-'} | |
| mode = 'ab' | |
| with self.session.get(url, stream=True, headers=headers, timeout=10) as r: | |
| r.raise_for_status() # Do not continue the download if the request was unsuccessful | |
| total_size = int(r.headers.get('content-length', 0)) | |
| block_size = 1024 * 1024 # 1MB | |
| tqdm_kwargs = { | |
| 'total': total_size, | |
| 'unit': 'iB', | |
| 'unit_scale': True, | |
| 'bar_format': '{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}' | |
| } | |
| if 'COLAB_GPU' in os.environ: | |
| tqdm_kwargs.update({ | |
| 'position': 0, | |
| 'leave': True | |
| }) | |
| with open(output_path, mode) as f: | |
| with tqdm.tqdm(**tqdm_kwargs) as t: | |
| count = 0 | |
| for data in r.iter_content(block_size): | |
| t.update(len(data)) | |
| f.write(data) | |
| if total_size != 0 and self.progress_bar is not None: | |
| count += len(data) | |
| self.progress_bar(float(count) / float(total_size), f"{filename}") | |
| def start_download_threads(self, file_list, output_folder, start_from_scratch=False, threads=4): | |
| thread_map(lambda url: self.get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True) | |
| def download_model_files(self, model, branch, links, sha256, output_folder, progress_bar=None, start_from_scratch=False, threads=4, specific_file=None, is_llamacpp=False): | |
| self.progress_bar = progress_bar | |
| # Create the folder and writing the metadata | |
| output_folder.mkdir(parents=True, exist_ok=True) | |
| if not is_llamacpp: | |
| metadata = f'url: https://huggingface.co/{model}\n' \ | |
| f'branch: {branch}\n' \ | |
| f'download date: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}\n' | |
| sha256_str = '\n'.join([f' {item[1]} {item[0]}' for item in sha256]) | |
| if sha256_str: | |
| metadata += f'sha256sum:\n{sha256_str}' | |
| metadata += '\n' | |
| (output_folder / 'huggingface-metadata.txt').write_text(metadata) | |
| if specific_file: | |
| print(f"Downloading {specific_file} to {output_folder}") | |
| else: | |
| print(f"Downloading the model to {output_folder}") | |
| self.start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads) | |
| def check_model_files(self, model, branch, links, sha256, output_folder): | |
| # Validate the checksums | |
| validated = True | |
| for i in range(len(sha256)): | |
| fpath = (output_folder / sha256[i][0]) | |
| if not fpath.exists(): | |
| print(f"The following file is missing: {fpath}") | |
| validated = False | |
| continue | |
| with open(output_folder / sha256[i][0], "rb") as f: | |
| file_hash = hashlib.file_digest(f, "sha256").hexdigest() | |
| if file_hash != sha256[i][1]: | |
| print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}') | |
| validated = False | |
| else: | |
| print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}') | |
| if validated: | |
| print('[+] Validated checksums of all model files!') | |
| else: | |
| print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.') | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('MODEL', type=str, default=None, nargs='?') | |
| parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.') | |
| parser.add_argument('--threads', type=int, default=4, help='Number of files to download simultaneously.') | |
| parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).') | |
| parser.add_argument('--specific-file', type=str, default=None, help='Name of the specific file to download (if not provided, downloads all).') | |
| parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.') | |
| parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.') | |
| parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.') | |
| parser.add_argument('--max-retries', type=int, default=5, help='Max retries count when get error in download time.') | |
| args = parser.parse_args() | |
| branch = args.branch | |
| model = args.MODEL | |
| specific_file = args.specific_file | |
| if model is None: | |
| print("Error: Please specify the model you'd like to download (e.g. 'python download-model.py facebook/opt-1.3b').") | |
| sys.exit() | |
| downloader = ModelDownloader(max_retries=args.max_retries) | |
| # Clean up the model/branch names | |
| try: | |
| model, branch = downloader.sanitize_model_and_branch_names(model, branch) | |
| except ValueError as err_branch: | |
| print(f"Error: {err_branch}") | |
| sys.exit() | |
| # Get the download links from Hugging Face | |
| links, sha256, is_lora, is_llamacpp = downloader.get_download_links_from_huggingface(model, branch, text_only=args.text_only, specific_file=specific_file) | |
| # Get the output folder | |
| output_folder = downloader.get_output_folder(model, branch, is_lora, is_llamacpp=is_llamacpp, base_folder=args.output) | |
| if args.check: | |
| # Check previously downloaded files | |
| downloader.check_model_files(model, branch, links, sha256, output_folder) | |
| else: | |
| # Download files | |
| downloader.download_model_files(model, branch, links, sha256, output_folder, specific_file=specific_file, threads=args.threads, is_llamacpp=is_llamacpp) | |