Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import DiffusionPipeline
|
4 |
+
import os
|
5 |
|
6 |
+
# Ensure GPU hardware is selected in Space settings!
|
7 |
+
print("Loading diffusion pipeline...")
|
8 |
+
pipe = DiffusionPipeline.from_pretrained(
|
9 |
+
"John6666/the-araminta-fv1-sdxl",
|
10 |
+
torch_dtype=torch.float16,
|
11 |
+
use_safetensors=True,
|
12 |
+
token=os.environ.get("HF_TOKEN") # Use token from secrets or OAuth
|
13 |
+
)
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
pipe = pipe.to("cuda")
|
16 |
+
else:
|
17 |
+
print("WARNING: No CUDA GPU available, using CPU.")
|
18 |
|
19 |
+
def generate_image(prompt, negative_prompt="", guidance_scale=7.5, num_steps=30):
|
20 |
+
print(f"Generating image for prompt: {prompt}")
|
21 |
+
try:
|
22 |
+
image = pipe(
|
23 |
+
prompt=prompt,
|
24 |
+
negative_prompt=negative_prompt,
|
25 |
+
guidance_scale=guidance_scale,
|
26 |
+
num_inference_steps=int(num_steps) # Ensure steps is int
|
27 |
+
).images[0]
|
28 |
+
print("Image generation successful.")
|
29 |
+
return image
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error during image generation: {e}")
|
32 |
+
raise gr.Error(f"Failed to generate image: {e}")
|
33 |
|
34 |
+
with gr.Blocks() as demo:
|
35 |
+
gr.Markdown("# The Araminta FV1 SDXL")
|
36 |
+
with gr.Row():
|
37 |
+
with gr.Column():
|
38 |
+
prompt_input = gr.Textbox(label="Prompt")
|
39 |
+
neg_prompt_input = gr.Textbox(label="Negative Prompt", value="")
|
40 |
+
gs_input = gr.Slider(label="Guidance Scale", minimum=1, maximum=20, step=0.5, value=7.5)
|
41 |
+
steps_input = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=30)
|
42 |
+
submit_btn = gr.Button("Generate")
|
43 |
+
with gr.Column():
|
44 |
+
output_image = gr.Image(label="Generated Image")
|
45 |
+
|
46 |
+
submit_btn.click(
|
47 |
+
fn=generate_image,
|
48 |
+
inputs=[prompt_input, neg_prompt_input, gs_input, steps_input],
|
49 |
+
outputs=output_image
|
50 |
+
)
|
51 |
+
|
52 |
+
print("Launching Gradio interface...")
|
53 |
demo.launch()
|