detection-repoter / data_visualization.py
xingqiang's picture
update
2590409
import plotly.graph_objs as go
import pandas as pd
from sklearn.decomposition import PCA
def create_feature_radar_chart(features):
categories = ['振幅', '分布范围', '衰减速度', '反射次数']
values = [features[f'{cat}值'] for cat in categories]
fig = go.Figure(data=go.Scatterpolar(
r=values,
theta=categories,
fill='toself'
))
fig.update_layout(
polar=dict(
radialaxis=dict(visible=True, range=[0, max(values)])
),
showlegend=False
)
return fig.to_html(full_html=False)
def create_pca_visualization(reports):
features = ['振幅值', '分布范围值', '衰减速度值', '反射次数值']
X = pd.DataFrame([r.features for r in reports])[features]
pca = PCA(n_components=2)
pca_result = pca.fit_transform(X)
df = pd.DataFrame(data=pca_result, columns=['PC1', 'PC2'])
df['缺陷类型'] = [r.defect_type for r in reports]
fig = go.Figure(data=go.Scatter(
x=df['PC1'],
y=df['PC2'],
mode='markers',
marker=dict(
size=10,
color=df['缺陷类型'].map({'空洞': 'red', '裂缝': 'blue'}),
opacity=0.8
),
text=df['缺陷类型']
))
fig.update_layout(
title='PCA of Radar Features',
xaxis_title='Principal Component 1',
yaxis_title='Principal Component 2'
)
return fig.to_html(full_html=False)