Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import numpy as np
|
|
10 |
import seaborn as sns
|
11 |
# Load the model
|
12 |
|
13 |
-
model = joblib.load('85pct(
|
14 |
|
15 |
# Define the categories
|
16 |
categories = {
|
@@ -96,54 +96,59 @@ def main():
|
|
96 |
# st.write("Enter the video details below:")
|
97 |
|
98 |
# Define a boolean flag variable to track prediction status
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
101 |
# Input fields
|
102 |
-
|
103 |
with st.container():
|
104 |
col1, col2, col3 = st.columns(3)
|
105 |
getTitle, getDuration, getCategory = "", 0.00, 1
|
106 |
getThumbnailUrl = ""
|
107 |
with col1:
|
108 |
-
url = st.text_input("URL",placeholder="Enter a video
|
109 |
if url:
|
110 |
metadata = get_metadata(url)
|
111 |
if not metadata.empty:
|
112 |
-
|
113 |
getTitle = metadata['title'].iloc[0]
|
114 |
getDuration = metadata['duration'].iloc[0]
|
115 |
category_id = metadata['category_id'].iloc[0]
|
116 |
getThumbnailUrl = metadata['thumbnail_link'].iloc[0]
|
117 |
getCategory = int(category_id)
|
118 |
-
|
119 |
if getThumbnailUrl is not None:
|
120 |
picture = get_picture_from_url(getThumbnailUrl)
|
121 |
if picture:
|
122 |
-
st.image(picture, caption='Thumbnail captured',width
|
123 |
with col2:
|
124 |
-
title = st.text_input("Title", placeholder="Enter a video title",value=getTitle)
|
125 |
duration = st.number_input("Duration (in seconds)", min_value=0.0, value=getDuration)
|
126 |
-
category = st.selectbox(
|
127 |
-
|
|
|
|
|
128 |
with col3:
|
129 |
picture = st.file_uploader("Upload Picture", type=["jpg", "jpeg", "png"])
|
130 |
if picture is not None:
|
131 |
-
st.picture(picture,caption='Thumbnail Uploaded',width
|
132 |
-
|
|
|
133 |
categoryId = categories[category]
|
134 |
|
135 |
if st.button("Predict"):
|
136 |
# Perform prediction
|
137 |
if title is None or title.strip() == "" and duration == 0:
|
138 |
st.warning("Please enter a title and duration.")
|
139 |
-
|
140 |
else:
|
141 |
if title is None or title.strip() == "":
|
142 |
st.warning("Please enter a title")
|
143 |
|
144 |
if duration == 0:
|
145 |
st.warning("Please enter a duration.")
|
146 |
-
|
147 |
else:
|
148 |
prediction = predict_trend(title, duration, categoryId)
|
149 |
if prediction[0] == 1:
|
@@ -152,50 +157,72 @@ def main():
|
|
152 |
else:
|
153 |
st.info("This video is predicted not to be a trend.")
|
154 |
st.markdown("")
|
155 |
-
|
156 |
|
157 |
-
|
158 |
-
|
|
|
159 |
with st.container():
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
169 |
with col4:
|
170 |
if selected_video is not None:
|
171 |
image = get_picture_from_url(selected_video['thumbnail_link'])
|
172 |
if image:
|
173 |
-
st.image(image, caption='Thumbnail captured',width
|
174 |
with col5:
|
175 |
st.write("Title:", selected_video['title'])
|
176 |
-
category_name = next(
|
|
|
|
|
177 |
st.write("Category:", category_name)
|
178 |
st.write("Duration:", selected_video['duration'])
|
179 |
-
|
180 |
-
st.error('Failed to retrieve trending videos.')
|
181 |
-
|
182 |
-
with tab3:
|
183 |
-
with st.container():
|
184 |
-
col6,col7 = st.columns(2)
|
185 |
|
|
|
|
|
|
|
|
|
|
|
186 |
with col6:
|
187 |
show_top_category()
|
188 |
-
|
189 |
with col7:
|
|
|
|
|
|
|
|
|
|
|
190 |
show_top_duration()
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
195 |
show_top_title()
|
|
|
|
|
196 |
|
197 |
-
|
|
|
|
|
198 |
show_top_titleLength()
|
|
|
|
|
|
|
|
|
199 |
|
200 |
def get_picture_from_url(url):
|
201 |
try:
|
@@ -205,8 +232,8 @@ def get_picture_from_url(url):
|
|
205 |
except:
|
206 |
return None
|
207 |
|
208 |
-
def
|
209 |
-
topCategory = pd.read_csv('topCategory.csv')
|
210 |
# Sort the DataFrame in ascending order based on predicted_prob column
|
211 |
topCategory_sorted = topCategory.sort_values('predicted_prob')
|
212 |
|
@@ -214,6 +241,10 @@ def show_top_category():
|
|
214 |
topCategory_sorted['rank'] = range(1, len(topCategory_sorted) + 1)
|
215 |
# Map category_id to category name using the categories dictionary
|
216 |
topCategory_sorted['category_name'] = topCategory_sorted['category_id'].map(lambda x: next((key for key, value in categories.items() if value == x), 'Unknown Category'))
|
|
|
|
|
|
|
|
|
217 |
|
218 |
# Set a color palette for the plot
|
219 |
color_palette = sns.color_palette('Set2', len(topCategory_sorted['category_id'].unique()))
|
@@ -228,28 +259,53 @@ def show_top_category():
|
|
228 |
# Display the legend and the plot in Streamlit
|
229 |
st.pyplot(fig)
|
230 |
|
231 |
-
def
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
242 |
plt.xlabel('Duration')
|
243 |
plt.ylabel('Predicted Probability')
|
244 |
plt.title('Top Durations')
|
245 |
-
|
246 |
-
|
247 |
st.pyplot(plt)
|
248 |
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
# Sort the DataFrame in ascending order based on predicted_prob column
|
252 |
-
topTitle_sorted = topTitle.sort_values('Importance Score')
|
|
|
|
|
|
|
|
|
253 |
sns.set(style="whitegrid")
|
254 |
plt.figure(figsize=(8, 6))
|
255 |
sns.barplot(x='Importance Score', y='Feature', data=topTitle_sorted, palette="rocket")
|
@@ -259,22 +315,44 @@ def show_top_title():
|
|
259 |
plt.tight_layout()
|
260 |
st.pyplot(plt)
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
def round_interval(interval_str):
|
264 |
start, end = map(float, interval_str.strip('()[]').split(','))
|
265 |
return f"({int(start)}, {int(end)})"
|
266 |
|
267 |
-
def
|
268 |
-
topTitleLength = pd.read_csv('topTitleLength.csv')
|
269 |
-
|
270 |
title_length_ranges = topTitleLength['titleLength']
|
271 |
predicted_probs = topTitleLength['predicted_prob']
|
272 |
rounded_ranges = [round_interval(range_val) for range_val in title_length_ranges]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
# Set the style of the plot
|
274 |
sns.set(style='whitegrid')
|
275 |
# Plot the graph using Seaborn
|
276 |
plt.figure(figsize=(10, 6))
|
277 |
-
sns.barplot(x=rounded_ranges, y=predicted_probs)
|
278 |
plt.xlabel('Title Length Range')
|
279 |
plt.ylabel('Predicted Probability')
|
280 |
plt.title('Top 5 Ranges for Title Length vs. Predicted Probability')
|
@@ -282,6 +360,15 @@ def show_top_titleLength():
|
|
282 |
plt.show()
|
283 |
st.pyplot(plt)
|
284 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
# Function to make predictions
|
286 |
def predict_trend(title, duration, category_id):
|
287 |
duration = str(duration)
|
|
|
10 |
import seaborn as sns
|
11 |
# Load the model
|
12 |
|
13 |
+
model = joblib.load('85pct(2).pkl')
|
14 |
|
15 |
# Define the categories
|
16 |
categories = {
|
|
|
96 |
# st.write("Enter the video details below:")
|
97 |
|
98 |
# Define a boolean flag variable to track prediction status
|
99 |
+
|
100 |
+
# Sidebar menu options
|
101 |
+
menu_options = ["Predict", "Trending", "Visualize"]
|
102 |
+
selected_option = st.sidebar.selectbox("Menu", menu_options)
|
103 |
+
|
104 |
# Input fields
|
105 |
+
if selected_option == "Predict":
|
106 |
with st.container():
|
107 |
col1, col2, col3 = st.columns(3)
|
108 |
getTitle, getDuration, getCategory = "", 0.00, 1
|
109 |
getThumbnailUrl = ""
|
110 |
with col1:
|
111 |
+
url = st.text_input("URL", placeholder="Enter a video URL")
|
112 |
if url:
|
113 |
metadata = get_metadata(url)
|
114 |
if not metadata.empty:
|
|
|
115 |
getTitle = metadata['title'].iloc[0]
|
116 |
getDuration = metadata['duration'].iloc[0]
|
117 |
category_id = metadata['category_id'].iloc[0]
|
118 |
getThumbnailUrl = metadata['thumbnail_link'].iloc[0]
|
119 |
getCategory = int(category_id)
|
120 |
+
|
121 |
if getThumbnailUrl is not None:
|
122 |
picture = get_picture_from_url(getThumbnailUrl)
|
123 |
if picture:
|
124 |
+
st.image(picture, caption='Thumbnail captured', width=320, channels="BGR")
|
125 |
with col2:
|
126 |
+
title = st.text_input("Title", placeholder="Enter a video title", value=getTitle)
|
127 |
duration = st.number_input("Duration (in seconds)", min_value=0.0, value=getDuration)
|
128 |
+
category = st.selectbox(
|
129 |
+
"Category", list(categories.keys()), index=list(categories.values()).index(getCategory)
|
130 |
+
)
|
131 |
+
|
132 |
with col3:
|
133 |
picture = st.file_uploader("Upload Picture", type=["jpg", "jpeg", "png"])
|
134 |
if picture is not None:
|
135 |
+
st.picture(picture, caption='Thumbnail Uploaded', width=400, channels="BGR")
|
136 |
+
|
137 |
+
# Convert category to category ID
|
138 |
categoryId = categories[category]
|
139 |
|
140 |
if st.button("Predict"):
|
141 |
# Perform prediction
|
142 |
if title is None or title.strip() == "" and duration == 0:
|
143 |
st.warning("Please enter a title and duration.")
|
144 |
+
|
145 |
else:
|
146 |
if title is None or title.strip() == "":
|
147 |
st.warning("Please enter a title")
|
148 |
|
149 |
if duration == 0:
|
150 |
st.warning("Please enter a duration.")
|
151 |
+
|
152 |
else:
|
153 |
prediction = predict_trend(title, duration, categoryId)
|
154 |
if prediction[0] == 1:
|
|
|
157 |
else:
|
158 |
st.info("This video is predicted not to be a trend.")
|
159 |
st.markdown("")
|
|
|
160 |
|
161 |
+
elif selected_option == "Trending":
|
162 |
+
tab1, tab2 = st.tabs(["Trending Board", "Video Info"])
|
163 |
+
country_code = st.sidebar.selectbox("Select Country Code", ['US', 'CA', 'GB', 'DE', 'FR', 'RU', 'BR', 'IN', 'MY', 'SG', 'JP', 'KR'])
|
164 |
with st.container():
|
165 |
+
with tab1:
|
166 |
+
st.write("Top 10 Trending Videos")
|
167 |
+
df = get_trending_videos(country_code)
|
168 |
+
st.dataframe(df)
|
169 |
+
|
170 |
+
with tab2:
|
171 |
+
if df is not None:
|
172 |
+
# Display video titles
|
173 |
+
selected_video_title = st.selectbox("Select a Video", df['title'])
|
174 |
+
selected_video = df[df['title'] == selected_video_title].iloc[0]
|
175 |
+
else:
|
176 |
+
st.error('Failed to retrieve trending videos.')
|
177 |
+
col4, col5 = st.columns(2)
|
178 |
with col4:
|
179 |
if selected_video is not None:
|
180 |
image = get_picture_from_url(selected_video['thumbnail_link'])
|
181 |
if image:
|
182 |
+
st.image(image, caption='Thumbnail captured', width=400, channels="BGR")
|
183 |
with col5:
|
184 |
st.write("Title:", selected_video['title'])
|
185 |
+
category_name = next(
|
186 |
+
(key for key, value in categories.items() if value == selected_video['category_id']), 'Unknown Category'
|
187 |
+
)
|
188 |
st.write("Category:", category_name)
|
189 |
st.write("Duration:", selected_video['duration'])
|
190 |
+
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
+
elif selected_option == "Visualize":
|
193 |
+
with st.container():
|
194 |
+
tab3, tab4, tab5, tab6 = st.tabs(["Best Category", "Best Duration","Best Title","Best Title Length"])
|
195 |
+
with tab3:
|
196 |
+
col6, col7 = st.columns(2)
|
197 |
with col6:
|
198 |
show_top_category()
|
199 |
+
|
200 |
with col7:
|
201 |
+
show_best_category()
|
202 |
+
|
203 |
+
with tab4:
|
204 |
+
col8, col9 = st.columns(2)
|
205 |
+
with col8:
|
206 |
show_top_duration()
|
207 |
|
208 |
+
with col9:
|
209 |
+
show_best_duration()
|
210 |
+
|
211 |
+
with tab5:
|
212 |
+
col10, col11 = st.columns(2)
|
213 |
+
with col10:
|
214 |
show_top_title()
|
215 |
+
with col11:
|
216 |
+
show_best_title()
|
217 |
|
218 |
+
with tab6:
|
219 |
+
col12, col13 = st.columns(2)
|
220 |
+
with col12:
|
221 |
show_top_titleLength()
|
222 |
+
with col13:
|
223 |
+
show_best_titleLength()
|
224 |
+
|
225 |
+
|
226 |
|
227 |
def get_picture_from_url(url):
|
228 |
try:
|
|
|
232 |
except:
|
233 |
return None
|
234 |
|
235 |
+
def get_top_category():
|
236 |
+
topCategory = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topCategory.csv')
|
237 |
# Sort the DataFrame in ascending order based on predicted_prob column
|
238 |
topCategory_sorted = topCategory.sort_values('predicted_prob')
|
239 |
|
|
|
241 |
topCategory_sorted['rank'] = range(1, len(topCategory_sorted) + 1)
|
242 |
# Map category_id to category name using the categories dictionary
|
243 |
topCategory_sorted['category_name'] = topCategory_sorted['category_id'].map(lambda x: next((key for key, value in categories.items() if value == x), 'Unknown Category'))
|
244 |
+
return topCategory_sorted
|
245 |
+
|
246 |
+
def show_top_category():
|
247 |
+
topCategory_sorted = get_top_category()
|
248 |
|
249 |
# Set a color palette for the plot
|
250 |
color_palette = sns.color_palette('Set2', len(topCategory_sorted['category_id'].unique()))
|
|
|
259 |
# Display the legend and the plot in Streamlit
|
260 |
st.pyplot(fig)
|
261 |
|
262 |
+
def show_best_category():
|
263 |
+
topCategory_sorted = get_top_category()
|
264 |
+
top_3_categories = topCategory_sorted.sort_values('predicted_prob', ascending=True).head(3)
|
265 |
+
top_3_categories = top_3_categories['category_name'].head(3)
|
266 |
+
st.header("Top 3 Categories")
|
267 |
+
# Display the top 3 category IDs with colorful formatting in Streamlit
|
268 |
+
for category_id in top_3_categories:
|
269 |
+
color = '#339933' if category_id == top_3_categories.iloc[0] else '#ffcc33' if category_id == top_3_categories.iloc[1] else '#ff9900'
|
270 |
+
st.write(f"<span style='color:{color};font-weight:bold;'>{category_id}</span>", unsafe_allow_html=True)
|
271 |
|
272 |
+
def get_top_duration():
|
273 |
+
topDurationsorted = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topDuration.csv')
|
274 |
+
topDurationsorted = topDurationsorted.sort_values('predicted_prob', ascending=False)
|
275 |
+
return topDurationsorted
|
276 |
+
|
277 |
+
def show_top_duration():
|
278 |
+
topDuration_sorted = get_top_duration()
|
279 |
+
# Set the style of the plot
|
280 |
+
sns.set(style='whitegrid')
|
281 |
+
# Plot the graph using Seaborn
|
282 |
+
plt.figure(figsize=(10, 6))
|
283 |
+
sns.barplot(x='duration_range', y='predicted_prob',data=topDuration_sorted)
|
284 |
plt.xlabel('Duration')
|
285 |
plt.ylabel('Predicted Probability')
|
286 |
plt.title('Top Durations')
|
287 |
+
plt.xticks(rotation=45)
|
288 |
+
plt.show()
|
289 |
st.pyplot(plt)
|
290 |
|
291 |
+
|
292 |
+
def show_best_duration():
|
293 |
+
topDurationRange = get_top_duration()
|
294 |
+
top_3_durationRange = topDurationRange.sort_values('predicted_prob', ascending=False).head(3)
|
295 |
+
top_3_range = top_3_durationRange['duration_range'].head(3)
|
296 |
+
st.header("Top 3 Duration Range")
|
297 |
+
for range in top_3_range:
|
298 |
+
color = '#339933' if range == top_3_range.iloc[0] else '#ffcc33' if range == top_3_range.iloc[1] else '#ff9900'
|
299 |
+
st.write(f"<span style='color:{color};font-weight:bold;'>{range}</span>", unsafe_allow_html=True)
|
300 |
+
|
301 |
+
def get_top_title():
|
302 |
+
topTitle = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topTitle.csv')
|
303 |
# Sort the DataFrame in ascending order based on predicted_prob column
|
304 |
+
topTitle_sorted = topTitle.sort_values('Importance Score', ascending=False)
|
305 |
+
return topTitle_sorted
|
306 |
+
|
307 |
+
def show_top_title():
|
308 |
+
topTitle_sorted = get_top_title()
|
309 |
sns.set(style="whitegrid")
|
310 |
plt.figure(figsize=(8, 6))
|
311 |
sns.barplot(x='Importance Score', y='Feature', data=topTitle_sorted, palette="rocket")
|
|
|
315 |
plt.tight_layout()
|
316 |
st.pyplot(plt)
|
317 |
|
318 |
+
def show_best_title():
|
319 |
+
topTitle_sorted = get_top_title()
|
320 |
+
top_3_keyword = topTitle_sorted.sort_values('Importance Score', ascending=False).head(3)
|
321 |
+
top_3_keyword = topTitle_sorted['Feature'].head(3)
|
322 |
+
st.header("Top 3 Keyword")
|
323 |
+
for feature in top_3_keyword:
|
324 |
+
color = '#339933' if feature == top_3_keyword.iloc[0] else '#ffcc33' if feature == top_3_keyword.iloc[1] else '#ff9900'
|
325 |
+
st.write(f"<span style='color:{color};font-weight:bold;'>{feature}</span>", unsafe_allow_html=True)
|
326 |
+
|
327 |
|
328 |
def round_interval(interval_str):
|
329 |
start, end = map(float, interval_str.strip('()[]').split(','))
|
330 |
return f"({int(start)}, {int(end)})"
|
331 |
|
332 |
+
def get_top_titleLength():
|
333 |
+
topTitleLength = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topTitleLength.csv')
|
|
|
334 |
title_length_ranges = topTitleLength['titleLength']
|
335 |
predicted_probs = topTitleLength['predicted_prob']
|
336 |
rounded_ranges = [round_interval(range_val) for range_val in title_length_ranges]
|
337 |
+
data = {
|
338 |
+
'rounded_ranges': rounded_ranges,
|
339 |
+
'predicted_probs': predicted_probs
|
340 |
+
}
|
341 |
+
|
342 |
+
topTitleLength = pd.DataFrame(data)
|
343 |
+
|
344 |
+
# Sort the DataFrame by predicted_probs in descending order
|
345 |
+
sorted_titleLength = topTitleLength.sort_values(by='predicted_probs', ascending=False)
|
346 |
+
return sorted_titleLength
|
347 |
+
|
348 |
+
def show_top_titleLength():
|
349 |
+
topTitleLength = get_top_titleLength()
|
350 |
+
|
351 |
# Set the style of the plot
|
352 |
sns.set(style='whitegrid')
|
353 |
# Plot the graph using Seaborn
|
354 |
plt.figure(figsize=(10, 6))
|
355 |
+
sns.barplot(x='rounded_ranges', y='predicted_probs',data=topTitleLength)
|
356 |
plt.xlabel('Title Length Range')
|
357 |
plt.ylabel('Predicted Probability')
|
358 |
plt.title('Top 5 Ranges for Title Length vs. Predicted Probability')
|
|
|
360 |
plt.show()
|
361 |
st.pyplot(plt)
|
362 |
|
363 |
+
def show_best_titleLength():
|
364 |
+
topTitleLength = get_top_titleLength()
|
365 |
+
top_3_titleLength = topTitleLength.sort_values('predicted_probs', ascending=False).head(3)
|
366 |
+
top_3_range = top_3_titleLength['rounded_ranges'].head(3)
|
367 |
+
st.header("Top 3 Title Length Range")
|
368 |
+
for range in top_3_range:
|
369 |
+
color = '#339933' if range == top_3_range.iloc[0] else '#ffcc33' if range == top_3_range.iloc[1] else '#ff9900'
|
370 |
+
st.write(f"<span style='color:{color};font-weight:bold;'>{range}</span>", unsafe_allow_html=True)
|
371 |
+
|
372 |
# Function to make predictions
|
373 |
def predict_trend(title, duration, category_id):
|
374 |
duration = str(duration)
|