Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -206,7 +206,7 @@ def get_picture_from_url(url):
|
|
206 |
return None
|
207 |
|
208 |
def show_top_category():
|
209 |
-
topCategory = pd.read_csv('topCategory.csv')
|
210 |
# Sort the DataFrame in ascending order based on predicted_prob column
|
211 |
topCategory_sorted = topCategory.sort_values('predicted_prob')
|
212 |
|
@@ -229,16 +229,16 @@ def show_top_category():
|
|
229 |
st.pyplot(fig)
|
230 |
|
231 |
def show_top_duration():
|
232 |
-
topDuration = pd.read_csv('topDuration.csv')
|
233 |
topDuration_sorted = topDuration.sort_values('predicted_prob', ascending=False)
|
234 |
|
235 |
# Set the duration as the x-axis and predicted_prob as the y-axis
|
236 |
x = topDuration_sorted['duration']
|
237 |
y = topDuration_sorted['predicted_prob']
|
238 |
-
|
239 |
-
# Create a scatter plot of duration vs predicted_prob
|
240 |
plt.figure(figsize=(8, 5)) # Adjust the figure size here (width, height)
|
241 |
-
|
242 |
plt.xlabel('Duration')
|
243 |
plt.ylabel('Predicted Probability')
|
244 |
plt.title('Top Durations')
|
@@ -247,15 +247,16 @@ def show_top_duration():
|
|
247 |
st.pyplot(plt)
|
248 |
|
249 |
def show_top_title():
|
250 |
-
topTitle = pd.read_csv('topTitle.csv')
|
251 |
# Sort the DataFrame in ascending order based on predicted_prob column
|
252 |
topTitle_sorted = topTitle.sort_values('Importance Score')
|
253 |
-
|
254 |
-
plt.
|
255 |
-
|
256 |
-
plt.xlabel('Importance Score')
|
257 |
-
plt.ylabel('Feature')
|
258 |
-
plt.title('Top Title Features')
|
|
|
259 |
st.pyplot(plt)
|
260 |
|
261 |
|
@@ -264,7 +265,7 @@ def round_interval(interval_str):
|
|
264 |
return f"({int(start)}, {int(end)})"
|
265 |
|
266 |
def show_top_titleLength():
|
267 |
-
topTitleLength = pd.read_csv('topTitleLength.csv')
|
268 |
|
269 |
title_length_ranges = topTitleLength['titleLength']
|
270 |
predicted_probs = topTitleLength['predicted_prob']
|
|
|
206 |
return None
|
207 |
|
208 |
def show_top_category():
|
209 |
+
topCategory = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topCategory.csv')
|
210 |
# Sort the DataFrame in ascending order based on predicted_prob column
|
211 |
topCategory_sorted = topCategory.sort_values('predicted_prob')
|
212 |
|
|
|
229 |
st.pyplot(fig)
|
230 |
|
231 |
def show_top_duration():
|
232 |
+
topDuration = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topDuration.csv')
|
233 |
topDuration_sorted = topDuration.sort_values('predicted_prob', ascending=False)
|
234 |
|
235 |
# Set the duration as the x-axis and predicted_prob as the y-axis
|
236 |
x = topDuration_sorted['duration']
|
237 |
y = topDuration_sorted['predicted_prob']
|
238 |
+
|
239 |
+
# Create a scatter plot of duration vs predicted_prob using seaborn
|
240 |
plt.figure(figsize=(8, 5)) # Adjust the figure size here (width, height)
|
241 |
+
sns.scatterplot(x=x, y=y, palette='coolwarm') # Use coolwarm palette for colorful plot
|
242 |
plt.xlabel('Duration')
|
243 |
plt.ylabel('Predicted Probability')
|
244 |
plt.title('Top Durations')
|
|
|
247 |
st.pyplot(plt)
|
248 |
|
249 |
def show_top_title():
|
250 |
+
topTitle = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topTitle.csv')
|
251 |
# Sort the DataFrame in ascending order based on predicted_prob column
|
252 |
topTitle_sorted = topTitle.sort_values('Importance Score')
|
253 |
+
sns.set(style="whitegrid")
|
254 |
+
plt.figure(figsize=(8, 6))
|
255 |
+
sns.barplot(x='Importance Score', y='Feature', data=topTitle_sorted, palette="rocket")
|
256 |
+
plt.xlabel('Importance Score', fontsize=12)
|
257 |
+
plt.ylabel('Feature', fontsize=12)
|
258 |
+
plt.title('Top Title Features', fontsize=14)
|
259 |
+
plt.tight_layout()
|
260 |
st.pyplot(plt)
|
261 |
|
262 |
|
|
|
265 |
return f"({int(start)}, {int(end)})"
|
266 |
|
267 |
def show_top_titleLength():
|
268 |
+
topTitleLength = pd.read_csv(r'C:\Users\LEGION\Desktop\MMU\Data Science Fundamental\Project\Prediction of Video\topTitleLength.csv')
|
269 |
|
270 |
title_length_ranges = topTitleLength['titleLength']
|
271 |
predicted_probs = topTitleLength['predicted_prob']
|