Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| from detectron2.data import DatasetCatalog, MetadataCatalog | |
| from detectron2.utils.file_io import PathManager | |
| from detectron2.data.datasets.coco import load_sem_seg | |
| from . import openseg_classes | |
| ADE20K_150_CATEGORIES = openseg_classes.get_ade20k_categories_with_prompt_eng() | |
| ADE20k_COLORS = [k["color"] for k in ADE20K_150_CATEGORIES] | |
| MetadataCatalog.get("openvocab_ade20k_sem_seg_train").set( | |
| stuff_colors=ADE20k_COLORS[:], | |
| ) | |
| MetadataCatalog.get("openvocab_ade20k_sem_seg_val").set( | |
| stuff_colors=ADE20k_COLORS[:], | |
| ) | |
| def load_ade20k_panoptic_json(json_file, image_dir, gt_dir, semseg_dir, meta): | |
| """ | |
| Args: | |
| image_dir (str): path to the raw dataset. e.g., "~/coco/train2017". | |
| gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017". | |
| json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json". | |
| Returns: | |
| list[dict]: a list of dicts in Detectron2 standard format. (See | |
| `Using Custom Datasets </tutorials/datasets.html>`_ ) | |
| """ | |
| def _convert_category_id(segment_info, meta): | |
| if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]: | |
| segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ | |
| segment_info["category_id"] | |
| ] | |
| segment_info["isthing"] = True | |
| else: | |
| segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][ | |
| segment_info["category_id"] | |
| ] | |
| segment_info["isthing"] = False | |
| return segment_info | |
| with PathManager.open(json_file) as f: | |
| json_info = json.load(f) | |
| ret = [] | |
| for ann in json_info["annotations"]: | |
| image_id = ann["image_id"] | |
| # TODO: currently we assume image and label has the same filename but | |
| # different extension, and images have extension ".jpg" for COCO. Need | |
| # to make image extension a user-provided argument if we extend this | |
| # function to support other COCO-like datasets. | |
| image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg") | |
| label_file = os.path.join(gt_dir, ann["file_name"]) | |
| sem_label_file = os.path.join(semseg_dir, ann["file_name"]) | |
| segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]] | |
| ret.append( | |
| { | |
| "file_name": image_file, | |
| "image_id": image_id, | |
| "pan_seg_file_name": label_file, | |
| "sem_seg_file_name": sem_label_file, | |
| "segments_info": segments_info, | |
| } | |
| ) | |
| assert len(ret), f"No images found in {image_dir}!" | |
| assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"] | |
| assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"] | |
| assert PathManager.isfile(ret[0]["sem_seg_file_name"]), ret[0]["sem_seg_file_name"] | |
| return ret | |
| def register_ade20k_panoptic( | |
| name, metadata, image_root, panoptic_root, semantic_root, panoptic_json, instances_json=None | |
| ): | |
| """ | |
| Register a "standard" version of ADE20k panoptic segmentation dataset named `name`. | |
| The dictionaries in this registered dataset follows detectron2's standard format. | |
| Hence it's called "standard". | |
| Args: | |
| name (str): the name that identifies a dataset, | |
| e.g. "ade20k_panoptic_train" | |
| metadata (dict): extra metadata associated with this dataset. | |
| image_root (str): directory which contains all the images | |
| panoptic_root (str): directory which contains panoptic annotation images in COCO format | |
| panoptic_json (str): path to the json panoptic annotation file in COCO format | |
| sem_seg_root (none): not used, to be consistent with | |
| `register_coco_panoptic_separated`. | |
| instances_json (str): path to the json instance annotation file | |
| """ | |
| panoptic_name = name | |
| DatasetCatalog.register( | |
| panoptic_name, | |
| lambda: load_ade20k_panoptic_json( | |
| panoptic_json, image_root, panoptic_root, semantic_root, metadata | |
| ), | |
| ) | |
| MetadataCatalog.get(panoptic_name).set( | |
| panoptic_root=panoptic_root, | |
| image_root=image_root, | |
| panoptic_json=panoptic_json, | |
| json_file=instances_json, | |
| evaluator_type="ade20k_panoptic_seg", | |
| ignore_label=255, | |
| label_divisor=1000, | |
| **metadata, | |
| ) | |
| _PREDEFINED_SPLITS_ADE20K_PANOPTIC = { | |
| "openvocab_ade20k_panoptic_train": ( | |
| "ADEChallengeData2016/images/training", | |
| "ADEChallengeData2016/ade20k_panoptic_train", | |
| "ADEChallengeData2016/ade20k_panoptic_train.json", | |
| "ADEChallengeData2016/annotations_detectron2/training", | |
| "ADEChallengeData2016/ade20k_instance_train.json", | |
| ), | |
| "openvocab_ade20k_panoptic_val": ( | |
| "ADEChallengeData2016/images/validation", | |
| "ADEChallengeData2016/ade20k_panoptic_val", | |
| "ADEChallengeData2016/ade20k_panoptic_val.json", | |
| "ADEChallengeData2016/annotations_detectron2/validation", | |
| "ADEChallengeData2016/ade20k_instance_val.json", | |
| ), | |
| } | |
| def get_metadata(): | |
| meta = {} | |
| # The following metadata maps contiguous id from [0, #thing categories + | |
| # #stuff categories) to their names and colors. We have to replica of the | |
| # same name and color under "thing_*" and "stuff_*" because the current | |
| # visualization function in D2 handles thing and class classes differently | |
| # due to some heuristic used in Panoptic FPN. We keep the same naming to | |
| # enable reusing existing visualization functions. | |
| thing_classes = [k["name"] for k in ADE20K_150_CATEGORIES if k["isthing"] == 1] | |
| thing_colors = [k["color"] for k in ADE20K_150_CATEGORIES if k["isthing"] == 1] | |
| stuff_classes = [k["name"] for k in ADE20K_150_CATEGORIES] | |
| stuff_colors = [k["color"] for k in ADE20K_150_CATEGORIES] | |
| meta["thing_classes"] = thing_classes | |
| meta["thing_colors"] = thing_colors | |
| meta["stuff_classes"] = stuff_classes | |
| meta["stuff_colors"] = stuff_colors | |
| # Convert category id for training: | |
| # category id: like semantic segmentation, it is the class id for each | |
| # pixel. Since there are some classes not used in evaluation, the category | |
| # id is not always contiguous and thus we have two set of category ids: | |
| # - original category id: category id in the original dataset, mainly | |
| # used for evaluation. | |
| # - contiguous category id: [0, #classes), in order to train the linear | |
| # softmax classifier. | |
| thing_dataset_id_to_contiguous_id = {} | |
| stuff_dataset_id_to_contiguous_id = {} | |
| for i, cat in enumerate(ADE20K_150_CATEGORIES): | |
| if cat["isthing"]: | |
| thing_dataset_id_to_contiguous_id[cat["id"]] = i | |
| # else: | |
| # stuff_dataset_id_to_contiguous_id[cat["id"]] = i | |
| # in order to use sem_seg evaluator | |
| stuff_dataset_id_to_contiguous_id[cat["id"]] = i | |
| meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id | |
| meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id | |
| return meta | |
| def register_all_ade20k_panoptic(root): | |
| metadata = get_metadata() | |
| for ( | |
| prefix, | |
| (image_root, panoptic_root, panoptic_json, semantic_root, instance_json), | |
| ) in _PREDEFINED_SPLITS_ADE20K_PANOPTIC.items(): | |
| # The "standard" version of COCO panoptic segmentation dataset, | |
| # e.g. used by Panoptic-DeepLab | |
| register_ade20k_panoptic( | |
| prefix, | |
| metadata, | |
| os.path.join(root, image_root), | |
| os.path.join(root, panoptic_root), | |
| os.path.join(root, semantic_root), | |
| os.path.join(root, panoptic_json), | |
| os.path.join(root, instance_json), | |
| ) | |
| def register_all_ade20k_semantic(root): | |
| root = os.path.join(root, "ADEChallengeData2016") | |
| for name, dirname in [("train", "training"), ("val", "validation")]: | |
| image_dir = os.path.join(root, "images", dirname) | |
| gt_dir = os.path.join(root, "annotations_detectron2", dirname) | |
| name = f"openvocab_ade20k_sem_seg_{name}" | |
| DatasetCatalog.register( | |
| name, lambda x=image_dir, y=gt_dir: load_sem_seg(y, x, gt_ext="png", image_ext="jpg") | |
| ) | |
| MetadataCatalog.get(name).set( | |
| stuff_classes=[x["name"] for x in ADE20K_150_CATEGORIES], | |
| image_root=image_dir, | |
| sem_seg_root=gt_dir, | |
| evaluator_type="sem_seg", | |
| ignore_label=255, | |
| ) | |
| _root = os.getenv("DETECTRON2_DATASETS", "datasets") | |
| register_all_ade20k_panoptic(_root) | |
| register_all_ade20k_semantic(_root) |