Spaces:
Runtime error
Runtime error
File size: 12,265 Bytes
3dac99f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Modified by Xueyan Zou ([email protected])
# --------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates.
import json
import os
from collections import namedtuple
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.utils.file_io import PathManager
Label = namedtuple(
"Label",
[
"name", # The identifier of this label, e.g. 'car', 'person', ... .
# We use them to uniquely name a class
"id", # An integer ID that is associated with this label.
# The IDs are used to represent the label in ground truth images An ID
# of -1 means that this label does not have an ID and thus is ignored
# when creating ground truth images (e.g. license plate). Do not modify
# these IDs, since exactly these IDs are expected by the evaluation
# server.
"trainId",
# Feel free to modify these IDs as suitable for your method. Then
# create ground truth images with train IDs, using the tools provided
# in the 'preparation' folder. However, make sure to validate or submit
# results to our evaluation server using the regular IDs above! For
# trainIds, multiple labels might have the same ID. Then, these labels
# are mapped to the same class in the ground truth images. For the
# inverse mapping, we use the label that is defined first in the list
# below. For example, mapping all void-type classes to the same ID in
# training, might make sense for some approaches. Max value is 255!
"category", # The name of the category that this label belongs to
"categoryId",
# The ID of this category. Used to create ground truth images
# on category level.
"hasInstances",
# Whether this label distinguishes between single instances or not
"ignoreInEval",
# Whether pixels having this class as ground truth label are ignored
# during evaluations or not
"color", # The color of this label
],
)
# Our extended list of label types. Our train id is compatible with Cityscapes
BDD_CATEGORIES = [
# name id trainId category catId
# hasInstances ignoreInEval color
# Label("unlabeled", 0, 255, "void", 0, False, True, (0, 0, 0)),
Label("dynamic", 1, 255, "void", 0, False, True, (111, 74, 0)),
Label("ego vehicle", 2, 255, "void", 0, False, True, (0, 0, 0)),
Label("ground", 3, 255, "void", 0, False, True, (81, 0, 81)),
Label("static", 4, 255, "void", 0, False, True, (0, 0, 0)),
Label("parking", 5, 255, "flat", 1, False, True, (250, 170, 160)),
Label("rail track", 6, 255, "flat", 1, False, True, (230, 150, 140)),
Label("road", 7, 0, "flat", 1, False, False, (128, 64, 128)),
Label("sidewalk", 8, 1, "flat", 1, False, False, (244, 35, 232)),
Label("bridge", 9, 255, "construction", 2, False, True, (150, 100, 100)),
Label("building", 10, 2, "construction", 2, False, False, (70, 70, 70)),
Label("fence", 11, 4, "construction", 2, False, False, (190, 153, 153)),
Label("garage", 12, 255, "construction", 2, False, True, (180, 100, 180)),
Label(
"guard rail", 13, 255, "construction", 2, False, True, (180, 165, 180)
),
Label("tunnel", 14, 255, "construction", 2, False, True, (150, 120, 90)),
Label("wall", 15, 3, "construction", 2, False, False, (102, 102, 156)),
Label("banner", 16, 255, "object", 3, False, True, (250, 170, 100)),
Label("billboard", 17, 255, "object", 3, False, True, (220, 220, 250)),
Label("lane divider", 18, 255, "object", 3, False, True, (255, 165, 0)),
Label("parking sign", 19, 255, "object", 3, False, False, (220, 20, 60)),
Label("pole", 20, 5, "object", 3, False, False, (153, 153, 153)),
Label("polegroup", 21, 255, "object", 3, False, True, (153, 153, 153)),
Label("street light", 22, 255, "object", 3, False, True, (220, 220, 100)),
Label("traffic cone", 23, 255, "object", 3, False, True, (255, 70, 0)),
Label(
"traffic device", 24, 255, "object", 3, False, True, (220, 220, 220)
),
Label("traffic light", 25, 6, "object", 3, False, False, (250, 170, 30)),
Label("traffic sign", 26, 7, "object", 3, False, False, (220, 220, 0)),
Label(
"traffic sign frame",
27,
255,
"object",
3,
False,
True,
(250, 170, 250),
),
Label("terrain", 28, 9, "nature", 4, False, False, (152, 251, 152)),
Label("vegetation", 29, 8, "nature", 4, False, False, (107, 142, 35)),
Label("sky", 30, 10, "sky", 5, False, False, (70, 130, 180)),
Label("person", 31, 11, "human", 6, True, False, (220, 20, 60)),
Label("rider", 32, 12, "human", 6, True, False, (255, 0, 0)),
Label("bicycle", 33, 18, "vehicle", 7, True, False, (119, 11, 32)),
Label("bus", 34, 15, "vehicle", 7, True, False, (0, 60, 100)),
Label("car", 35, 13, "vehicle", 7, True, False, (0, 0, 142)),
Label("caravan", 36, 255, "vehicle", 7, True, True, (0, 0, 90)),
Label("motorcycle", 37, 17, "vehicle", 7, True, False, (0, 0, 230)),
Label("trailer", 38, 255, "vehicle", 7, True, True, (0, 0, 110)),
Label("train", 39, 16, "vehicle", 7, True, False, (0, 80, 100)),
Label("truck", 40, 14, "vehicle", 7, True, False, (0, 0, 70)),
]
BDD_COLORS = [k.color for k in BDD_CATEGORIES]
MetadataCatalog.get("bdd100k_pano_val").set(
stuff_colors=BDD_COLORS[:],
)
def load_bdd_panoptic_json(json_file, image_dir, gt_dir, meta):
"""
Args:
image_dir (str): path to the raw dataset. e.g., "~/coco/train2017".
gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017".
json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json".
Returns:
list[dict]: a list of dicts in Detectron2 standard format. (See
`Using Custom Datasets </tutorials/datasets.html>`_ )
"""
def _convert_category_id(segment_info, meta):
if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]:
segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][
segment_info["category_id"]
]
segment_info["isthing"] = True
else:
segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][
segment_info["category_id"]
]
segment_info["isthing"] = False
return segment_info
with PathManager.open(json_file) as f:
json_info = json.load(f)
ret = []
for ann in json_info["annotations"]:
image_id = ann["image_id"]
# TODO: currently we assume image and label has the same filename but
# different extension, and images have extension ".jpg" for COCO. Need
# to make image extension a user-provided argument if we extend this
# function to support other COCO-like datasets.
file_name = ann['file_name'].replace('png', 'jpg')
image_file = os.path.join(image_dir, file_name)
label_file = os.path.join(gt_dir, ann["file_name"])
segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]]
ret.append(
{
"file_name": image_file,
"image_id": image_id,
"pan_seg_file_name": label_file,
"segments_info": segments_info,
}
)
assert len(ret), f"No images found in {image_dir}!"
assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"]
assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"]
return ret
def register_bdd_panoptic(
name, metadata, image_root, panoptic_root, panoptic_json,
):
"""
Register a "standard" version of ADE20k panoptic segmentation dataset named `name`.
The dictionaries in this registered dataset follows detectron2's standard format.
Hence it's called "standard".
Args:
name (str): the name that identifies a dataset,
e.g. "ade20k_panoptic_train"
metadata (dict): extra metadata associated with this dataset.
image_root (str): directory which contains all the images
panoptic_root (str): directory which contains panoptic annotation images in COCO format
panoptic_json (str): path to the json panoptic annotation file in COCO format
sem_seg_root (none): not used, to be consistent with
`register_coco_panoptic_separated`.
instances_json (str): path to the json instance annotation file
"""
panoptic_name = name
DatasetCatalog.register(
panoptic_name,
lambda: load_bdd_panoptic_json(
panoptic_json, image_root, panoptic_root, metadata
),
)
MetadataCatalog.get(panoptic_name).set(
panoptic_root=panoptic_root,
image_root=image_root,
panoptic_json=panoptic_json,
evaluator_type="bdd_panoptic_pano",
ignore_label=255,
label_divisor=1000,
**metadata,
)
_PREDEFINED_SPLITS_SCANNET_PANOPTIC = {
"bdd10k_40_panoptic_val": (
"bdd100k/images/10k/val",
"bdd100k/jsons/pan_seg/masks/val",
"bdd100k/jsons/pan_seg_val_cocofmt.json",
),
}
def get_metadata():
meta = {}
# The following metadata maps contiguous id from [0, #thing categories +
# #stuff categories) to their names and colors. We have to replica of the
# same name and color under "thing_*" and "stuff_*" because the current
# visualization function in D2 handles thing and class classes differently
# due to some heuristic used in Panoptic FPN. We keep the same naming to
# enable reusing existing visualization functions.
thing_classes = [k.name for k in BDD_CATEGORIES if k.hasInstances == True]
thing_colors = [k.color for k in BDD_CATEGORIES if k.hasInstances == True]
stuff_classes = [k.name for k in BDD_CATEGORIES]
stuff_colors = [k.color for k in BDD_CATEGORIES]
meta["thing_classes"] = thing_classes
meta["thing_colors"] = thing_colors
meta["stuff_classes"] = stuff_classes
meta["stuff_colors"] = stuff_colors
# Convert category id for training:
# category id: like semantic segmentation, it is the class id for each
# pixel. Since there are some classes not used in evaluation, the category
# id is not always contiguous and thus we have two set of category ids:
# - original category id: category id in the original dataset, mainly
# used for evaluation.
# - contiguous category id: [0, #classes), in order to train the linear
# softmax classifier.
thing_dataset_id_to_contiguous_id = {}
stuff_dataset_id_to_contiguous_id = {}
for i, cat in enumerate(BDD_CATEGORIES):
if cat.hasInstances:
thing_dataset_id_to_contiguous_id[cat.id] = i
# else:
# stuff_dataset_id_to_contiguous_id[cat["id"]] = i
# in order to use sem_seg evaluator
stuff_dataset_id_to_contiguous_id[cat.id] = i
meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id
meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id
meta["offset"] = 0
meta["object_mask_threshold"] = 0.4
return meta
def register_all_scannet_panoptic(root):
metadata = get_metadata()
for (
prefix,
(image_root, panoptic_root, panoptic_json),
) in _PREDEFINED_SPLITS_SCANNET_PANOPTIC.items():
# The "standard" version of COCO panoptic segmentation dataset,
# e.g. used by Panoptic-DeepLab
register_bdd_panoptic(
prefix,
metadata,
os.path.join(root, image_root),
os.path.join(root, panoptic_root),
os.path.join(root, panoptic_json),
)
_root = os.getenv("DETECTRON2_DATASETS", "datasets")
register_all_scannet_panoptic(_root) |