Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,416 Bytes
a4fd82c d826ee1 a4fd82c d826ee1 a4fd82c aec9ec9 a4fd82c 72583bd a4fd82c a9c5082 a4fd82c 72583bd a4fd82c ad46b55 32ace45 a4fd82c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
import copy
import re
import os
os.system('huggingface-cli login --token os.getenv("HF_TOKEN")')
from argparse import ArgumentParser
from threading import Thread
import spaces
import gradio as gr
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, TextIteratorStreamer
import torch
DEFAULT_CKPT_PATH = 'Qwen/Qwen2-VL-7B-Instruct'
def _get_args():
parser = ArgumentParser()
parser.add_argument('-c',
'--checkpoint-path',
type=str,
default=DEFAULT_CKPT_PATH,
help='Checkpoint name or path, default to %(default)r')
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
parser.add_argument('--share',
action='store_true',
default=False,
help='Create a publicly shareable link for the interface.')
parser.add_argument('--inbrowser',
action='store_true',
default=False,
help='Automatically launch the interface in a new tab on the default browser.')
parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.')
parser.add_argument('--server-name', type=str, default='0.0.0.0', help='Demo server name.')
args = parser.parse_args()
return args
def _load_model_processor(args):
# if args.cpu_only:
# device_map = 'cpu'
# else:
# device_map = 'auto'
device_map = "cuda" if torch.cuda.is_available() else "cpu"
# default: Load the model on the available device(s)
# model = Qwen2VLForConditionalGeneration.from_pretrained(args.checkpoint_path, device_map=device_map)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
model = Qwen2VLForConditionalGeneration.from_pretrained(args.checkpoint_path,
torch_dtype='auto',
attn_implementation='flash_attention_2',
device_map=device_map)
processor = AutoProcessor.from_pretrained(args.checkpoint_path)
return model, processor
def _parse_text(text):
lines = text.split('\n')
lines = [line for line in lines if line != '']
count = 0
for i, line in enumerate(lines):
if '```' in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = '<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace('`', r'\`')
line = line.replace('<', '<')
line = line.replace('>', '>')
line = line.replace(' ', ' ')
line = line.replace('*', '*')
line = line.replace('_', '_')
line = line.replace('-', '-')
line = line.replace('.', '.')
line = line.replace('!', '!')
line = line.replace('(', '(')
line = line.replace(')', ')')
line = line.replace('$', '$')
lines[i] = '<br>' + line
text = ''.join(lines)
return text
def _remove_image_special(text):
text = text.replace('<ref>', '').replace('</ref>', '')
return re.sub(r'<box>.*?(</box>|$)', '', text)
def is_video_file(filename):
video_extensions = ['.mp4', '.avi', '.mkv', '.mov', '.wmv', '.flv', '.webm', '.mpeg']
return any(filename.lower().endswith(ext) for ext in video_extensions)
def transform_messages(original_messages):
transformed_messages = []
for message in original_messages:
new_content = []
for item in message['content']:
if 'image' in item:
new_item = {'type': 'image', 'image': item['image']}
elif 'text' in item:
new_item = {'type': 'text', 'text': item['text']}
elif 'video' in item:
new_item = {'type': 'video', 'video': item['video']}
else:
continue
new_content.append(new_item)
new_message = {'role': message['role'], 'content': new_content}
transformed_messages.append(new_message)
return transformed_messages
def _launch_demo(args, model, processor):
@spaces.GPU
def call_local_model(model, processor, messages):
messages = transform_messages(messages)
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors='pt').to(model.device)
print(inputs)
tokenizer = processor.tokenizer
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {'max_new_tokens': 512, 'streamer': streamer, **inputs}
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
generated_text = ''
for new_text in streamer:
generated_text += new_text
yield generated_text
def create_predict_fn():
def predict(_chatbot, task_history):
nonlocal model, processor
chat_query = _chatbot[-1][0]
query = task_history[-1][0]
if len(chat_query) == 0:
_chatbot.pop()
task_history.pop()
return _chatbot
print('User: ' + _parse_text(query))
history_cp = copy.deepcopy(task_history)
full_response = ''
messages = []
content = []
for q, a in history_cp:
if isinstance(q, (tuple, list)):
if is_video_file(q[0]):
content.append({'video': f'file://{q[0]}'})
else:
content.append({'image': f'file://{q[0]}'})
else:
content.append({'text': q})
messages.append({'role': 'user', 'content': content})
messages.append({'role': 'assistant', 'content': [{'text': a}]})
content = []
messages.pop()
for response in call_local_model(model, processor, messages):
_chatbot[-1] = (_parse_text(chat_query), _remove_image_special(_parse_text(response)))
yield _chatbot
full_response = _parse_text(response)
task_history[-1] = (query, full_response)
print('Qwen-VL-Chat: ' + _parse_text(full_response))
yield _chatbot
return predict
def create_regenerate_fn():
def regenerate(_chatbot, task_history):
nonlocal model, processor
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
_chatbot_gen = predict(_chatbot, task_history)
for _chatbot in _chatbot_gen:
yield _chatbot
return regenerate
predict = create_predict_fn()
regenerate = create_regenerate_fn()
def add_text(history, task_history, text):
task_text = text
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ''
def add_file(history, task_history, file):
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def reset_user_input():
return gr.update(value='')
def reset_state(task_history):
task_history.clear()
return []
with gr.Blocks() as demo:
gr.Markdown("""\
<p align="center"><img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2-VL/qwen2VL_logo.png" style="height: 80px"/><p>"""
)
gr.Markdown("""<center><font size=8>Qwen2-VL</center>""")
gr.Markdown("""\
<center><font size=3>This WebUI is based on Qwen2-VL, developed by Alibaba Cloud.</center>""")
gr.Markdown("""<center><font size=3>本WebUI基于Qwen2-VL。</center>""")
chatbot = gr.Chatbot(label='Qwen2-VL', elem_classes='control-height', height=500)
query = gr.Textbox(lines=2, label='Input')
task_history = gr.State([])
with gr.Row():
addfile_btn = gr.UploadButton('📁 Upload (上传文件)', file_types=['image', 'video'])
submit_btn = gr.Button('🚀 Submit (发送)')
regen_btn = gr.Button('🤔️ Regenerate (重试)')
empty_bin = gr.Button('🧹 Clear History (清除历史)')
submit_btn.click(add_text, [chatbot, task_history, query],
[chatbot, task_history]).then(predict, [chatbot, task_history], [chatbot], show_progress=True)
submit_btn.click(reset_user_input, [], [query])
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)
gr.Markdown("""\
<font size=2>Note: This demo is governed by the original license of Qwen2-VL. \
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \
including hate speech, violence, pornography, deception, etc. \
(注:本演示受Qwen2-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""")
demo.queue().launch(
share=args.share,
inbrowser=args.inbrowser,
server_port=args.server_port,
server_name=args.server_name,
)
def main():
args = _get_args()
model, processor = _load_model_processor(args)
_launch_demo(args, model, processor)
if __name__ == '__main__':
main()
|