Spaces:
Build error
Build error
| ''' | |
| 按中英混合识别 | |
| 按日英混合识别 | |
| 多语种启动切分识别语种 | |
| 全部按中文识别 | |
| 全部按英文识别 | |
| 全部按日文识别 | |
| ''' | |
| import os, re, logging | |
| import LangSegment | |
| logging.getLogger("markdown_it").setLevel(logging.ERROR) | |
| logging.getLogger("urllib3").setLevel(logging.ERROR) | |
| logging.getLogger("httpcore").setLevel(logging.ERROR) | |
| logging.getLogger("httpx").setLevel(logging.ERROR) | |
| logging.getLogger("asyncio").setLevel(logging.ERROR) | |
| logging.getLogger("charset_normalizer").setLevel(logging.ERROR) | |
| logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) | |
| import pdb | |
| if os.path.exists("./gweight.txt"): | |
| with open("./gweight.txt", 'r', encoding="utf-8") as file: | |
| gweight_data = file.read() | |
| gpt_path = os.environ.get( | |
| "gpt_path", gweight_data) | |
| else: | |
| gpt_path = os.environ.get( | |
| "gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") | |
| if os.path.exists("./sweight.txt"): | |
| with open("./sweight.txt", 'r', encoding="utf-8") as file: | |
| sweight_data = file.read() | |
| sovits_path = os.environ.get("sovits_path", sweight_data) | |
| else: | |
| sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth") | |
| # gpt_path = os.environ.get( | |
| # "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" | |
| # ) | |
| # sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth") | |
| cnhubert_base_path = os.environ.get( | |
| "cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base" | |
| ) | |
| bert_path = os.environ.get( | |
| "bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" | |
| ) | |
| infer_ttswebui = os.environ.get("infer_ttswebui", 9872) | |
| infer_ttswebui = int(infer_ttswebui) | |
| is_share = os.environ.get("is_share", "False") | |
| is_share = eval(is_share) | |
| if "_CUDA_VISIBLE_DEVICES" in os.environ: | |
| os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] | |
| is_half = eval(os.environ.get("is_half", "True")) | |
| import gradio as gr | |
| from transformers import AutoModelForMaskedLM, AutoTokenizer | |
| import numpy as np | |
| import librosa, torch | |
| from feature_extractor import cnhubert | |
| cnhubert.cnhubert_base_path = cnhubert_base_path | |
| from module.models import SynthesizerTrn | |
| from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
| from text import cleaned_text_to_sequence | |
| from text.cleaner import clean_text | |
| from time import time as ttime | |
| from module.mel_processing import spectrogram_torch | |
| from my_utils import load_audio | |
| from tools.i18n.i18n import I18nAuto | |
| i18n = I18nAuto() | |
| os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 | |
| if torch.cuda.is_available(): | |
| device = "cuda" | |
| elif torch.backends.mps.is_available(): | |
| device = "mps" | |
| else: | |
| device = "cpu" | |
| tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
| bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
| if is_half == True: | |
| bert_model = bert_model.half().to(device) | |
| else: | |
| bert_model = bert_model.to(device) | |
| def get_bert_feature(text, word2ph): | |
| with torch.no_grad(): | |
| inputs = tokenizer(text, return_tensors="pt") | |
| for i in inputs: | |
| inputs[i] = inputs[i].to(device) | |
| res = bert_model(**inputs, output_hidden_states=True) | |
| res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
| assert len(word2ph) == len(text) | |
| phone_level_feature = [] | |
| for i in range(len(word2ph)): | |
| repeat_feature = res[i].repeat(word2ph[i], 1) | |
| phone_level_feature.append(repeat_feature) | |
| phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
| return phone_level_feature.T | |
| class DictToAttrRecursive(dict): | |
| def __init__(self, input_dict): | |
| super().__init__(input_dict) | |
| for key, value in input_dict.items(): | |
| if isinstance(value, dict): | |
| value = DictToAttrRecursive(value) | |
| self[key] = value | |
| setattr(self, key, value) | |
| def __getattr__(self, item): | |
| try: | |
| return self[item] | |
| except KeyError: | |
| raise AttributeError(f"Attribute {item} not found") | |
| def __setattr__(self, key, value): | |
| if isinstance(value, dict): | |
| value = DictToAttrRecursive(value) | |
| super(DictToAttrRecursive, self).__setitem__(key, value) | |
| super().__setattr__(key, value) | |
| def __delattr__(self, item): | |
| try: | |
| del self[item] | |
| except KeyError: | |
| raise AttributeError(f"Attribute {item} not found") | |
| ssl_model = cnhubert.get_model() | |
| if is_half == True: | |
| ssl_model = ssl_model.half().to(device) | |
| else: | |
| ssl_model = ssl_model.to(device) | |
| def change_sovits_weights(sovits_path): | |
| global vq_model, hps | |
| dict_s2 = torch.load(sovits_path, map_location="cpu") | |
| hps = dict_s2["config"] | |
| hps = DictToAttrRecursive(hps) | |
| hps.model.semantic_frame_rate = "25hz" | |
| vq_model = SynthesizerTrn( | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| n_speakers=hps.data.n_speakers, | |
| **hps.model | |
| ) | |
| if ("pretrained" not in sovits_path): | |
| del vq_model.enc_q | |
| if is_half == True: | |
| vq_model = vq_model.half().to(device) | |
| else: | |
| vq_model = vq_model.to(device) | |
| vq_model.eval() | |
| print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
| with open("./sweight.txt", "w", encoding="utf-8") as f: | |
| f.write(sovits_path) | |
| change_sovits_weights(sovits_path) | |
| def change_gpt_weights(gpt_path): | |
| global hz, max_sec, t2s_model, config | |
| hz = 50 | |
| dict_s1 = torch.load(gpt_path, map_location="cpu") | |
| config = dict_s1["config"] | |
| max_sec = config["data"]["max_sec"] | |
| t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | |
| t2s_model.load_state_dict(dict_s1["weight"]) | |
| if is_half == True: | |
| t2s_model = t2s_model.half() | |
| t2s_model = t2s_model.to(device) | |
| t2s_model.eval() | |
| total = sum([param.nelement() for param in t2s_model.parameters()]) | |
| print("Number of parameter: %.2fM" % (total / 1e6)) | |
| with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path) | |
| change_gpt_weights(gpt_path) | |
| def get_spepc(hps, filename): | |
| audio = load_audio(filename, int(hps.data.sampling_rate)) | |
| audio = torch.FloatTensor(audio) | |
| audio_norm = audio | |
| audio_norm = audio_norm.unsqueeze(0) | |
| spec = spectrogram_torch( | |
| audio_norm, | |
| hps.data.filter_length, | |
| hps.data.sampling_rate, | |
| hps.data.hop_length, | |
| hps.data.win_length, | |
| center=False, | |
| ) | |
| return spec | |
| dict_language = { | |
| i18n("中文"): "all_zh",#全部按中文识别 | |
| i18n("英文"): "en",#全部按英文识别#######不变 | |
| i18n("日文"): "all_ja",#全部按日文识别 | |
| i18n("中英混合"): "zh",#按中英混合识别####不变 | |
| i18n("日英混合"): "ja",#按日英混合识别####不变 | |
| i18n("多语种混合"): "auto",#多语种启动切分识别语种 | |
| } | |
| def splite_en_inf(sentence, language): | |
| pattern = re.compile(r'[a-zA-Z ]+') | |
| textlist = [] | |
| langlist = [] | |
| pos = 0 | |
| for match in pattern.finditer(sentence): | |
| start, end = match.span() | |
| if start > pos: | |
| textlist.append(sentence[pos:start]) | |
| langlist.append(language) | |
| textlist.append(sentence[start:end]) | |
| langlist.append("en") | |
| pos = end | |
| if pos < len(sentence): | |
| textlist.append(sentence[pos:]) | |
| langlist.append(language) | |
| # Merge punctuation into previous word | |
| for i in range(len(textlist)-1, 0, -1): | |
| if re.match(r'^[\W_]+$', textlist[i]): | |
| textlist[i-1] += textlist[i] | |
| del textlist[i] | |
| del langlist[i] | |
| # Merge consecutive words with the same language tag | |
| i = 0 | |
| while i < len(langlist) - 1: | |
| if langlist[i] == langlist[i+1]: | |
| textlist[i] += textlist[i+1] | |
| del textlist[i+1] | |
| del langlist[i+1] | |
| else: | |
| i += 1 | |
| return textlist, langlist | |
| def clean_text_inf(text, language): | |
| formattext = "" | |
| language = language.replace("all_","") | |
| for tmp in LangSegment.getTexts(text): | |
| if language == "ja": | |
| if tmp["lang"] == language or tmp["lang"] == "zh": | |
| formattext += tmp["text"] + " " | |
| continue | |
| if tmp["lang"] == language: | |
| formattext += tmp["text"] + " " | |
| while " " in formattext: | |
| formattext = formattext.replace(" ", " ") | |
| phones, word2ph, norm_text = clean_text(formattext, language) | |
| phones = cleaned_text_to_sequence(phones) | |
| return phones, word2ph, norm_text | |
| dtype=torch.float16 if is_half == True else torch.float32 | |
| def get_bert_inf(phones, word2ph, norm_text, language): | |
| language=language.replace("all_","") | |
| if language == "zh": | |
| bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) | |
| else: | |
| bert = torch.zeros( | |
| (1024, len(phones)), | |
| dtype=torch.float16 if is_half == True else torch.float32, | |
| ).to(device) | |
| return bert | |
| def nonen_clean_text_inf(text, language): | |
| if(language!="auto"): | |
| textlist, langlist = splite_en_inf(text, language) | |
| else: | |
| textlist=[] | |
| langlist=[] | |
| for tmp in LangSegment.getTexts(text): | |
| langlist.append(tmp["lang"]) | |
| textlist.append(tmp["text"]) | |
| phones_list = [] | |
| word2ph_list = [] | |
| norm_text_list = [] | |
| for i in range(len(textlist)): | |
| lang = langlist[i] | |
| phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
| phones_list.append(phones) | |
| if lang == "zh": | |
| word2ph_list.append(word2ph) | |
| norm_text_list.append(norm_text) | |
| print(word2ph_list) | |
| phones = sum(phones_list, []) | |
| word2ph = sum(word2ph_list, []) | |
| norm_text = ' '.join(norm_text_list) | |
| return phones, word2ph, norm_text | |
| def nonen_get_bert_inf(text, language): | |
| if(language!="auto"): | |
| textlist, langlist = splite_en_inf(text, language) | |
| else: | |
| textlist=[] | |
| langlist=[] | |
| for tmp in LangSegment.getTexts(text): | |
| langlist.append(tmp["lang"]) | |
| textlist.append(tmp["text"]) | |
| print(textlist) | |
| print(langlist) | |
| bert_list = [] | |
| for i in range(len(textlist)): | |
| lang = langlist[i] | |
| phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
| bert = get_bert_inf(phones, word2ph, norm_text, lang) | |
| bert_list.append(bert) | |
| bert = torch.cat(bert_list, dim=1) | |
| return bert | |
| splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } | |
| def get_first(text): | |
| pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" | |
| text = re.split(pattern, text)[0].strip() | |
| return text | |
| def get_cleaned_text_final(text,language): | |
| if language in {"en","all_zh","all_ja"}: | |
| phones, word2ph, norm_text = clean_text_inf(text, language) | |
| elif language in {"zh", "ja","auto"}: | |
| phones, word2ph, norm_text = nonen_clean_text_inf(text, language) | |
| return phones, word2ph, norm_text | |
| def get_bert_final(phones, word2ph, text,language,device): | |
| if language == "en": | |
| bert = get_bert_inf(phones, word2ph, text, language) | |
| elif language in {"zh", "ja","auto"}: | |
| bert = nonen_get_bert_inf(text, language) | |
| elif language == "all_zh": | |
| bert = get_bert_feature(text, word2ph).to(device) | |
| else: | |
| bert = torch.zeros((1024, len(phones))).to(device) | |
| return bert | |
| def merge_short_text_in_array(texts, threshold): | |
| if (len(texts)) < 2: | |
| return texts | |
| result = [] | |
| text = "" | |
| for ele in texts: | |
| text += ele | |
| if len(text) >= threshold: | |
| result.append(text) | |
| text = "" | |
| if (len(text) > 0): | |
| if len(result) == 0: | |
| result.append(text) | |
| else: | |
| result[len(result) - 1] += text | |
| return result | |
| def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False): | |
| if prompt_text is None or len(prompt_text) == 0: | |
| ref_free = True | |
| t0 = ttime() | |
| prompt_language = dict_language[prompt_language] | |
| text_language = dict_language[text_language] | |
| if not ref_free: | |
| prompt_text = prompt_text.strip("\n") | |
| if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." | |
| print(i18n("实际输入的参考文本:"), prompt_text) | |
| text = text.strip("\n") | |
| if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text | |
| print(i18n("实际输入的目标文本:"), text) | |
| zero_wav = np.zeros( | |
| int(hps.data.sampling_rate * 0.3), | |
| dtype=np.float16 if is_half == True else np.float32, | |
| ) | |
| with torch.no_grad(): | |
| wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
| if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): | |
| raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) | |
| wav16k = torch.from_numpy(wav16k) | |
| zero_wav_torch = torch.from_numpy(zero_wav) | |
| if is_half == True: | |
| wav16k = wav16k.half().to(device) | |
| zero_wav_torch = zero_wav_torch.half().to(device) | |
| else: | |
| wav16k = wav16k.to(device) | |
| zero_wav_torch = zero_wav_torch.to(device) | |
| wav16k = torch.cat([wav16k, zero_wav_torch]) | |
| ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ | |
| "last_hidden_state" | |
| ].transpose( | |
| 1, 2 | |
| ) # .float() | |
| codes = vq_model.extract_latent(ssl_content) | |
| prompt_semantic = codes[0, 0] | |
| t1 = ttime() | |
| if (how_to_cut == i18n("凑四句一切")): | |
| text = cut1(text) | |
| elif (how_to_cut == i18n("凑50字一切")): | |
| text = cut2(text) | |
| elif (how_to_cut == i18n("按中文句号。切")): | |
| text = cut3(text) | |
| elif (how_to_cut == i18n("按英文句号.切")): | |
| text = cut4(text) | |
| elif (how_to_cut == i18n("按标点符号切")): | |
| text = cut5(text) | |
| while "\n\n" in text: | |
| text = text.replace("\n\n", "\n") | |
| print(i18n("实际输入的目标文本(切句后):"), text) | |
| texts = text.split("\n") | |
| texts = merge_short_text_in_array(texts, 5) | |
| audio_opt = [] | |
| if not ref_free: | |
| phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language) | |
| print("前端处理后的参考文本:%s"%norm_text1) | |
| bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype) | |
| for text in texts: | |
| # 解决输入目标文本的空行导致报错的问题 | |
| if (len(text.strip()) == 0): | |
| continue | |
| if (text[-1] not in splits): text += "。" if text_language != "en" else "." | |
| print(i18n("实际输入的目标文本(每句):"), text) | |
| phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language) | |
| print(i18n("前端处理后的文本(每句):"), norm_text2) | |
| bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype) | |
| if not ref_free: | |
| bert = torch.cat([bert1, bert2], 1) | |
| all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0) | |
| else: | |
| bert = bert2 | |
| all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0) | |
| bert = bert.to(device).unsqueeze(0) | |
| all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
| prompt = prompt_semantic.unsqueeze(0).to(device) | |
| t2 = ttime() | |
| with torch.no_grad(): | |
| # pred_semantic = t2s_model.model.infer( | |
| pred_semantic, idx = t2s_model.model.infer_panel( | |
| all_phoneme_ids, | |
| all_phoneme_len, | |
| None if ref_free else prompt, | |
| bert, | |
| # prompt_phone_len=ph_offset, | |
| top_k=top_k, | |
| top_p=top_p, | |
| temperature=temperature, | |
| early_stop_num=hz * max_sec, | |
| ) | |
| t3 = ttime() | |
| # print(pred_semantic.shape,idx) | |
| pred_semantic = pred_semantic[:, -idx:].unsqueeze( | |
| 0 | |
| ) # .unsqueeze(0)#mq要多unsqueeze一次 | |
| refer = get_spepc(hps, ref_wav_path) # .to(device) | |
| if is_half == True: | |
| refer = refer.half().to(device) | |
| else: | |
| refer = refer.to(device) | |
| # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
| audio = ( | |
| vq_model.decode( | |
| pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer | |
| ) | |
| .detach() | |
| .cpu() | |
| .numpy()[0, 0] | |
| ) ###试试重建不带上prompt部分 | |
| max_audio=np.abs(audio).max()#简单防止16bit爆音 | |
| if max_audio>1:audio/=max_audio | |
| audio_opt.append(audio) | |
| audio_opt.append(zero_wav) | |
| t4 = ttime() | |
| print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
| yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype( | |
| np.int16 | |
| ) | |
| def split(todo_text): | |
| todo_text = todo_text.replace("……", "。").replace("——", ",") | |
| if todo_text[-1] not in splits: | |
| todo_text += "。" | |
| i_split_head = i_split_tail = 0 | |
| len_text = len(todo_text) | |
| todo_texts = [] | |
| while 1: | |
| if i_split_head >= len_text: | |
| break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
| if todo_text[i_split_head] in splits: | |
| i_split_head += 1 | |
| todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
| i_split_tail = i_split_head | |
| else: | |
| i_split_head += 1 | |
| return todo_texts | |
| def cut1(inp): | |
| inp = inp.strip("\n") | |
| inps = split(inp) | |
| split_idx = list(range(0, len(inps), 4)) | |
| split_idx[-1] = None | |
| if len(split_idx) > 1: | |
| opts = [] | |
| for idx in range(len(split_idx) - 1): | |
| opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) | |
| else: | |
| opts = [inp] | |
| return "\n".join(opts) | |
| def cut2(inp): | |
| inp = inp.strip("\n") | |
| inps = split(inp) | |
| if len(inps) < 2: | |
| return inp | |
| opts = [] | |
| summ = 0 | |
| tmp_str = "" | |
| for i in range(len(inps)): | |
| summ += len(inps[i]) | |
| tmp_str += inps[i] | |
| if summ > 50: | |
| summ = 0 | |
| opts.append(tmp_str) | |
| tmp_str = "" | |
| if tmp_str != "": | |
| opts.append(tmp_str) | |
| # print(opts) | |
| if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 | |
| opts[-2] = opts[-2] + opts[-1] | |
| opts = opts[:-1] | |
| return "\n".join(opts) | |
| def cut3(inp): | |
| inp = inp.strip("\n") | |
| return "\n".join(["%s" % item for item in inp.strip("。").split("。")]) | |
| def cut4(inp): | |
| inp = inp.strip("\n") | |
| return "\n".join(["%s" % item for item in inp.strip(".").split(".")]) | |
| # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py | |
| def cut5(inp): | |
| # if not re.search(r'[^\w\s]', inp[-1]): | |
| # inp += '。' | |
| inp = inp.strip("\n") | |
| punds = r'[,.;?!、,。?!;:]' | |
| items = re.split(f'({punds})', inp) | |
| items = ["".join(group) for group in zip(items[::2], items[1::2])] | |
| opt = "\n".join(items) | |
| return opt | |
| def custom_sort_key(s): | |
| # 使用正则表达式提取字符串中的数字部分和非数字部分 | |
| parts = re.split('(\d+)', s) | |
| # 将数字部分转换为整数,非数字部分保持不变 | |
| parts = [int(part) if part.isdigit() else part for part in parts] | |
| return parts | |
| def change_choices(): | |
| SoVITS_names, GPT_names = get_weights_names() | |
| return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"} | |
| pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth" | |
| pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" | |
| SoVITS_weight_root = "SoVITS_weights" | |
| GPT_weight_root = "GPT_weights" | |
| os.makedirs(SoVITS_weight_root, exist_ok=True) | |
| os.makedirs(GPT_weight_root, exist_ok=True) | |
| def get_weights_names(): | |
| SoVITS_names = [pretrained_sovits_name] | |
| for name in os.listdir(SoVITS_weight_root): | |
| if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name)) | |
| GPT_names = [pretrained_gpt_name] | |
| for name in os.listdir(GPT_weight_root): | |
| if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name)) | |
| return SoVITS_names, GPT_names | |
| SoVITS_names, GPT_names = get_weights_names() | |
| with gr.Blocks(title="GPT-SoVITS WebUI") as app: | |
| gr.Markdown( | |
| value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.") | |
| ) | |
| with gr.Group(): | |
| gr.Markdown(value=i18n("模型切换")) | |
| with gr.Row(): | |
| GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True) | |
| SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True) | |
| refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") | |
| refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]) | |
| SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], []) | |
| GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], []) | |
| gr.Markdown(value=i18n("*请上传并填写参考信息")) | |
| with gr.Row(): | |
| inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath") | |
| with gr.Column(): | |
| ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True) | |
| gr.Markdown(i18n("使用无参考文本模式时建议使用微调的GPT")) | |
| prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="") | |
| prompt_language = gr.Dropdown( | |
| label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文") | |
| ) | |
| gr.Markdown(value=i18n("*请填写需要合成的目标文本。中英混合选中文,日英混合选日文,中日混合暂不支持,非目标语言文本自动遗弃。")) | |
| with gr.Row(): | |
| text = gr.Textbox(label=i18n("需要合成的文本"), value="") | |
| text_language = gr.Dropdown( | |
| label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文") | |
| ) | |
| how_to_cut = gr.Radio( | |
| label=i18n("怎么切"), | |
| choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ], | |
| value=i18n("凑四句一切"), | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("gpt采样参数(无参考文本时不要太低):") | |
| top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True) | |
| top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True) | |
| temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True) | |
| inference_button = gr.Button(i18n("合成语音"), variant="primary") | |
| output = gr.Audio(label=i18n("输出的语音")) | |
| inference_button.click( | |
| get_tts_wav, | |
| [inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free], | |
| [output], api_name="GetVoice" | |
| ) | |
| gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")) | |
| with gr.Row(): | |
| text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="") | |
| button1 = gr.Button(i18n("凑四句一切"), variant="primary") | |
| button2 = gr.Button(i18n("凑50字一切"), variant="primary") | |
| button3 = gr.Button(i18n("按中文句号。切"), variant="primary") | |
| button4 = gr.Button(i18n("按英文句号.切"), variant="primary") | |
| button5 = gr.Button(i18n("按标点符号切"), variant="primary") | |
| text_opt = gr.Textbox(label=i18n("切分后文本"), value="") | |
| button1.click(cut1, [text_inp], [text_opt]) | |
| button2.click(cut2, [text_inp], [text_opt]) | |
| button3.click(cut3, [text_inp], [text_opt]) | |
| button4.click(cut4, [text_inp], [text_opt]) | |
| button5.click(cut5, [text_inp], [text_opt]) | |
| gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")) | |
| app.queue(concurrency_count=511, max_size=1022).launch( | |
| server_name="0.0.0.0", | |
| inbrowser=True, | |
| share=is_share, | |
| server_port=infer_ttswebui, | |
| quiet=True, | |
| ) | |