File size: 7,600 Bytes
eb339cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import pickle
import sys
import datetime
import logging
import os.path as osp

from omegaconf import OmegaConf

import torch

from mld.config import parse_args
from mld.data.get_data import get_dataset
from mld.models.modeltype.mld import MLD
from mld.models.modeltype.vae import VAE
from mld.utils.utils import set_seed, move_batch_to_device
from mld.data.humanml.utils.plot_script import plot_3d_motion
from mld.utils.temos_utils import remove_padding

os.environ["TOKENIZERS_PARALLELISM"] = "false"


def load_example_hint_input(text_path: str) -> tuple:
    with open(text_path, "r") as f:
        lines = f.readlines()

    n_frames, control_type_ids, control_hint_ids = [], [], []
    for line in lines:
        s = line.strip()
        n_frame, control_type_id, control_hint_id = s.split(' ')
        n_frames.append(int(n_frame))
        control_type_ids.append(int(control_type_id))
        control_hint_ids.append(int(control_hint_id))

    return n_frames, control_type_ids, control_hint_ids


def load_example_input(text_path: str) -> tuple:
    with open(text_path, "r") as f:
        lines = f.readlines()

    texts, lens = [], []
    for line in lines:
        s = line.strip()
        s_l = s.split(" ")[0]
        s_t = s[(len(s_l) + 1):]
        lens.append(int(s_l))
        texts.append(s_t)
    return texts, lens


def main():
    cfg = parse_args()
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    set_seed(cfg.SEED_VALUE)

    name_time_str = osp.join(cfg.NAME, "demo_" + datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
    cfg.output_dir = osp.join(cfg.TEST_FOLDER, name_time_str)
    vis_dir = osp.join(cfg.output_dir, 'samples')
    os.makedirs(cfg.output_dir, exist_ok=False)
    os.makedirs(vis_dir, exist_ok=False)

    steam_handler = logging.StreamHandler(sys.stdout)
    file_handler = logging.FileHandler(osp.join(cfg.output_dir, 'output.log'))
    logging.basicConfig(level=logging.INFO,
                        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
                        datefmt="%m/%d/%Y %H:%M:%S",
                        handlers=[steam_handler, file_handler])
    logger = logging.getLogger(__name__)

    OmegaConf.save(cfg, osp.join(cfg.output_dir, 'config.yaml'))

    state_dict = torch.load(cfg.TEST.CHECKPOINTS, map_location="cpu")["state_dict"]
    logger.info("Loading checkpoints from {}".format(cfg.TEST.CHECKPOINTS))

    # Step 1: Check if the checkpoint is VAE-based.
    is_vae = False
    vae_key = 'vae.skel_embedding.weight'
    if vae_key in state_dict:
        is_vae = True
    logger.info(f'Is VAE: {is_vae}')

    # Step 2: Check if the checkpoint is MLD-based.
    is_mld = False
    mld_key = 'denoiser.time_embedding.linear_1.weight'
    if mld_key in state_dict:
        is_mld = True
    logger.info(f'Is MLD: {is_mld}')

    # Step 3: Check if the checkpoint is LCM-based.
    is_lcm = False
    lcm_key = 'denoiser.time_embedding.cond_proj.weight'  # unique key for CFG
    if lcm_key in state_dict:
        is_lcm = True
        time_cond_proj_dim = state_dict[lcm_key].shape[1]
        cfg.model.denoiser.params.time_cond_proj_dim = time_cond_proj_dim
    logger.info(f'Is LCM: {is_lcm}')

    # Step 4: Check if the checkpoint is Controlnet-based.
    cn_key = "controlnet.controlnet_cond_embedding.0.weight"
    is_controlnet = True if cn_key in state_dict else False
    cfg.model.is_controlnet = is_controlnet
    logger.info(f'Is Controlnet: {is_controlnet}')

    if is_mld or is_lcm or is_controlnet:
        target_model_class = MLD
    else:
        target_model_class = VAE

    if cfg.optimize:
        assert cfg.model.get('noise_optimizer') is not None
        cfg.model.noise_optimizer.params.optimize = True
        logger.info('Optimization enabled. Set the batch size to 1.')
        logger.info(f'Original batch size: {cfg.TEST.BATCH_SIZE}')
        cfg.TEST.BATCH_SIZE = 1

    dataset = get_dataset(cfg)
    model = target_model_class(cfg, dataset)
    model.to(device)
    model.eval()
    model.requires_grad_(False)
    logger.info(model.load_state_dict(state_dict))

    FPS = eval(f"cfg.DATASET.{cfg.DATASET.NAME.upper()}.FRAME_RATE")

    if cfg.example is not None and not is_controlnet:
        text, length = load_example_input(cfg.example)
        for t, l in zip(text, length):
            logger.info(f"{l}: {t}")

        batch = {"length": length, "text": text}

        for rep_i in range(cfg.replication):
            with torch.no_grad():
                joints = model(batch)[0]

            num_samples = len(joints)
            for i in range(num_samples):
                res = dict()
                pkl_path = osp.join(vis_dir, f"sample_id_{i}_length_{length[i]}_rep_{rep_i}.pkl")
                res['joints'] = joints[i].detach().cpu().numpy()
                res['text'] = text[i]
                res['length'] = length[i]
                res['hint'] = None
                with open(pkl_path, 'wb') as f:
                    pickle.dump(res, f)
                logger.info(f"Motions are generated here:\n{pkl_path}")

                if not cfg.no_plot:
                    plot_3d_motion(pkl_path.replace('.pkl', '.mp4'), joints[i].detach().cpu().numpy(), text[i], fps=FPS)

    else:
        test_dataloader = dataset.test_dataloader()
        for rep_i in range(cfg.replication):
            for batch_id, batch in enumerate(test_dataloader):
                batch = move_batch_to_device(batch, device)
                with torch.no_grad():
                    joints, joints_ref = model(batch)

                num_samples = len(joints)
                text = batch['text']
                length = batch['length']
                if 'hint' in batch:
                    hint, hint_mask = batch['hint'], batch['hint_mask']
                    hint = dataset.denorm_spatial(hint) * hint_mask
                    hint = remove_padding(hint, lengths=length)
                else:
                    hint = None

                for i in range(num_samples):
                    res = dict()
                    pkl_path = osp.join(vis_dir, f"batch_id_{batch_id}_sample_id_{i}_length_{length[i]}_rep_{rep_i}.pkl")
                    res['joints'] = joints[i].detach().cpu().numpy()
                    res['text'] = text[i]
                    res['length'] = length[i]
                    res['hint'] = hint[i].detach().cpu().numpy() if hint is not None else None
                    with open(pkl_path, 'wb') as f:
                        pickle.dump(res, f)
                    logger.info(f"Motions are generated here:\n{pkl_path}")

                    if not cfg.no_plot:
                        plot_3d_motion(pkl_path.replace('.pkl', '.mp4'), joints[i].detach().cpu().numpy(),
                                       text[i], fps=FPS, hint=hint[i].detach().cpu().numpy() if hint is not None else None)

                    if rep_i == 0:
                        res['joints'] = joints_ref[i].detach().cpu().numpy()
                        with open(pkl_path.replace('.pkl', '_ref.pkl'), 'wb') as f:
                            pickle.dump(res, f)
                        logger.info(f"Motions are generated here:\n{pkl_path.replace('.pkl', '_ref.pkl')}")
                        if not cfg.no_plot:
                            plot_3d_motion(pkl_path.replace('.pkl', '_ref.mp4'), joints_ref[i].detach().cpu().numpy(),
                                           text[i], fps=FPS, hint=hint[i].detach().cpu().numpy() if hint is not None else None)


if __name__ == "__main__":
    main()