File size: 7,600 Bytes
eb339cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import pickle
import sys
import datetime
import logging
import os.path as osp
from omegaconf import OmegaConf
import torch
from mld.config import parse_args
from mld.data.get_data import get_dataset
from mld.models.modeltype.mld import MLD
from mld.models.modeltype.vae import VAE
from mld.utils.utils import set_seed, move_batch_to_device
from mld.data.humanml.utils.plot_script import plot_3d_motion
from mld.utils.temos_utils import remove_padding
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def load_example_hint_input(text_path: str) -> tuple:
with open(text_path, "r") as f:
lines = f.readlines()
n_frames, control_type_ids, control_hint_ids = [], [], []
for line in lines:
s = line.strip()
n_frame, control_type_id, control_hint_id = s.split(' ')
n_frames.append(int(n_frame))
control_type_ids.append(int(control_type_id))
control_hint_ids.append(int(control_hint_id))
return n_frames, control_type_ids, control_hint_ids
def load_example_input(text_path: str) -> tuple:
with open(text_path, "r") as f:
lines = f.readlines()
texts, lens = [], []
for line in lines:
s = line.strip()
s_l = s.split(" ")[0]
s_t = s[(len(s_l) + 1):]
lens.append(int(s_l))
texts.append(s_t)
return texts, lens
def main():
cfg = parse_args()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
set_seed(cfg.SEED_VALUE)
name_time_str = osp.join(cfg.NAME, "demo_" + datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
cfg.output_dir = osp.join(cfg.TEST_FOLDER, name_time_str)
vis_dir = osp.join(cfg.output_dir, 'samples')
os.makedirs(cfg.output_dir, exist_ok=False)
os.makedirs(vis_dir, exist_ok=False)
steam_handler = logging.StreamHandler(sys.stdout)
file_handler = logging.FileHandler(osp.join(cfg.output_dir, 'output.log'))
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[steam_handler, file_handler])
logger = logging.getLogger(__name__)
OmegaConf.save(cfg, osp.join(cfg.output_dir, 'config.yaml'))
state_dict = torch.load(cfg.TEST.CHECKPOINTS, map_location="cpu")["state_dict"]
logger.info("Loading checkpoints from {}".format(cfg.TEST.CHECKPOINTS))
# Step 1: Check if the checkpoint is VAE-based.
is_vae = False
vae_key = 'vae.skel_embedding.weight'
if vae_key in state_dict:
is_vae = True
logger.info(f'Is VAE: {is_vae}')
# Step 2: Check if the checkpoint is MLD-based.
is_mld = False
mld_key = 'denoiser.time_embedding.linear_1.weight'
if mld_key in state_dict:
is_mld = True
logger.info(f'Is MLD: {is_mld}')
# Step 3: Check if the checkpoint is LCM-based.
is_lcm = False
lcm_key = 'denoiser.time_embedding.cond_proj.weight' # unique key for CFG
if lcm_key in state_dict:
is_lcm = True
time_cond_proj_dim = state_dict[lcm_key].shape[1]
cfg.model.denoiser.params.time_cond_proj_dim = time_cond_proj_dim
logger.info(f'Is LCM: {is_lcm}')
# Step 4: Check if the checkpoint is Controlnet-based.
cn_key = "controlnet.controlnet_cond_embedding.0.weight"
is_controlnet = True if cn_key in state_dict else False
cfg.model.is_controlnet = is_controlnet
logger.info(f'Is Controlnet: {is_controlnet}')
if is_mld or is_lcm or is_controlnet:
target_model_class = MLD
else:
target_model_class = VAE
if cfg.optimize:
assert cfg.model.get('noise_optimizer') is not None
cfg.model.noise_optimizer.params.optimize = True
logger.info('Optimization enabled. Set the batch size to 1.')
logger.info(f'Original batch size: {cfg.TEST.BATCH_SIZE}')
cfg.TEST.BATCH_SIZE = 1
dataset = get_dataset(cfg)
model = target_model_class(cfg, dataset)
model.to(device)
model.eval()
model.requires_grad_(False)
logger.info(model.load_state_dict(state_dict))
FPS = eval(f"cfg.DATASET.{cfg.DATASET.NAME.upper()}.FRAME_RATE")
if cfg.example is not None and not is_controlnet:
text, length = load_example_input(cfg.example)
for t, l in zip(text, length):
logger.info(f"{l}: {t}")
batch = {"length": length, "text": text}
for rep_i in range(cfg.replication):
with torch.no_grad():
joints = model(batch)[0]
num_samples = len(joints)
for i in range(num_samples):
res = dict()
pkl_path = osp.join(vis_dir, f"sample_id_{i}_length_{length[i]}_rep_{rep_i}.pkl")
res['joints'] = joints[i].detach().cpu().numpy()
res['text'] = text[i]
res['length'] = length[i]
res['hint'] = None
with open(pkl_path, 'wb') as f:
pickle.dump(res, f)
logger.info(f"Motions are generated here:\n{pkl_path}")
if not cfg.no_plot:
plot_3d_motion(pkl_path.replace('.pkl', '.mp4'), joints[i].detach().cpu().numpy(), text[i], fps=FPS)
else:
test_dataloader = dataset.test_dataloader()
for rep_i in range(cfg.replication):
for batch_id, batch in enumerate(test_dataloader):
batch = move_batch_to_device(batch, device)
with torch.no_grad():
joints, joints_ref = model(batch)
num_samples = len(joints)
text = batch['text']
length = batch['length']
if 'hint' in batch:
hint, hint_mask = batch['hint'], batch['hint_mask']
hint = dataset.denorm_spatial(hint) * hint_mask
hint = remove_padding(hint, lengths=length)
else:
hint = None
for i in range(num_samples):
res = dict()
pkl_path = osp.join(vis_dir, f"batch_id_{batch_id}_sample_id_{i}_length_{length[i]}_rep_{rep_i}.pkl")
res['joints'] = joints[i].detach().cpu().numpy()
res['text'] = text[i]
res['length'] = length[i]
res['hint'] = hint[i].detach().cpu().numpy() if hint is not None else None
with open(pkl_path, 'wb') as f:
pickle.dump(res, f)
logger.info(f"Motions are generated here:\n{pkl_path}")
if not cfg.no_plot:
plot_3d_motion(pkl_path.replace('.pkl', '.mp4'), joints[i].detach().cpu().numpy(),
text[i], fps=FPS, hint=hint[i].detach().cpu().numpy() if hint is not None else None)
if rep_i == 0:
res['joints'] = joints_ref[i].detach().cpu().numpy()
with open(pkl_path.replace('.pkl', '_ref.pkl'), 'wb') as f:
pickle.dump(res, f)
logger.info(f"Motions are generated here:\n{pkl_path.replace('.pkl', '_ref.pkl')}")
if not cfg.no_plot:
plot_3d_motion(pkl_path.replace('.pkl', '_ref.mp4'), joints_ref[i].detach().cpu().numpy(),
text[i], fps=FPS, hint=hint[i].detach().cpu().numpy() if hint is not None else None)
if __name__ == "__main__":
main()
|