import gradio as gr from PIL import Image import torch import re import os import requests from customization import customize_vae_decoder from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel, DDIMScheduler, EulerDiscreteScheduler from torchvision import transforms from attribution import MappingNetwork import math from typing import List from PIL import Image, ImageChops import numpy as np import torch PRETRAINED_MODEL_NAME_OR_PATH = "./checkpoints/" def get_image_grid(images: List[Image.Image]) -> Image: num_images = len(images) cols = 3#int(math.ceil(math.sqrt(num_images))) rows = 1#int(math.ceil(num_images / cols)) width, height = images[0].size grid_image = Image.new('RGB', (cols * width, rows * height)) for i, img in enumerate(images): x = i % cols y = i // cols grid_image.paste(img, (x * width, y * height)) return grid_image class AttributionModel: def __init__(self): is_cuda = False if torch.cuda.is_available(): is_cuda = True scheduler = EulerDiscreteScheduler.from_pretrained('stabilityai/stable-diffusion-2', subfolder="scheduler") self.pipe = StableDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2', scheduler=scheduler)#, safety_checker=None, torch_dtype=torch.float16) if is_cuda: self.pipe = self.pipe.to("cuda") self.resize_transform = transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR) self.vae = AutoencoderKL.from_pretrained( 'stabilityai/stable-diffusion-2', subfolder="vae" ) self.vae = customize_vae_decoder(self.vae, 128, "deqkv", "all", False, 1.0) self.mapping_network = MappingNetwork(32, 0, 128, None, num_layers=2, w_avg_beta=None, normalization = False) from torchvision.models import resnet50, ResNet50_Weights self.decoding_network = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2) self.decoding_network.fc = torch.nn.Linear(2048,32) self.vae.decoder.load_state_dict(torch.load(os.path.join(PRETRAINED_MODEL_NAME_OR_PATH, 'vae_decoder.pth'))) self.mapping_network.load_state_dict(torch.load(os.path.join(PRETRAINED_MODEL_NAME_OR_PATH, 'mapping_network.pth'))) self.decoding_network.load_state_dict(torch.load(os.path.join(PRETRAINED_MODEL_NAME_OR_PATH, 'decoding_network.pth'))) if is_cuda: self.vae = self.vae.to("cuda") self.mapping_network = self.mapping_network.to("cuda") self.decoding_network = self.decoding_network.to("cuda") self.test_norm = transforms.Compose( [ transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ] ) def infer(self, prompt, negative, steps, guidance_scale): with torch.no_grad(): out_latents = self.pipe([prompt], negative_prompt=[negative], output_type="latent", num_inference_steps=steps, guidance_scale=guidance_scale).images image_attr = self.inference_with_attribution(out_latents) image_attr_pil = self.pipe.numpy_to_pil(image_attr[0]) image_org = self.inference_without_attribution(out_latents) image_org_pil = self.pipe.numpy_to_pil(image_org[0]) # image_diff_pil = self.pipe.numpy_to_pil(image_attr[0] - image_org[0]) diff_factor = 5 image_diff_pil = ImageChops.difference(image_org_pil[0], image_attr_pil[0]).convert("RGB", (diff_factor,0,0,0,0,diff_factor,0,0,0,0,diff_factor,0)) return image_org_pil[0], image_attr_pil[0], image_diff_pil def inference_without_attribution(self, latents): latents = 1 / 0.18215 * latents with torch.no_grad(): image = self.pipe.vae.decode(latents).sample image = image.clamp(-1,1) image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def get_phis(self, phi_dimension, batch_size ,eps = 1e-8): phi_length = phi_dimension b = batch_size phi = torch.empty(b,phi_length).uniform_(0,1) return torch.bernoulli(phi) + eps def inference_with_attribution(self, latents, key=None): if key==None: key = self.get_phis(32, 1) latents = 1 / 0.18215 * latents with torch.no_grad(): image = self.vae.decode(latents, self.mapping_network(key.cuda())).sample image = image.clamp(-1,1) image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def postprocess(self, image): image = self.resize_transform(image) return image def detect_key(self, image): reconstructed_keys = self.decoding_network(self.test_norm((image / 2 + 0.5).clamp(0, 1))) return reconstructed_keys attribution_model = AttributionModel() def get_images(prompt, negative, steps, guidence_scale): x1, x2, x3 = attribution_model.infer(prompt, negative, steps, guidence_scale) return [x1, x2, x3] image_examples = [ ["A pikachu fine dining with a view to the Eiffel Tower", "low quality", 50, 10], ["A mecha robot in a favela in expressionist style", "low quality, 3d, photorealistic", 50, 10] ] with gr.Blocks() as demo: gr.Markdown( """