Spaces:
Runtime error
Runtime error
Update model.py
Browse files
model.py
CHANGED
|
@@ -1,242 +1,242 @@
|
|
| 1 |
-
import gc
|
| 2 |
-
import spaces
|
| 3 |
-
from safetensors.torch import load_file
|
| 4 |
-
from autoregressive.models.gpt_t2i import GPT_models
|
| 5 |
-
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 6 |
-
from language.t5 import T5Embedder
|
| 7 |
-
import torch
|
| 8 |
-
import numpy as np
|
| 9 |
-
import PIL
|
| 10 |
-
from PIL import Image
|
| 11 |
-
from condition.canny import CannyDetector
|
| 12 |
-
import time
|
| 13 |
-
from autoregressive.models.generate import generate
|
| 14 |
-
from condition.midas.depth import MidasDetector
|
| 15 |
-
|
| 16 |
-
models = {
|
| 17 |
-
"canny": "checkpoints/t2i/canny_MR.safetensors",
|
| 18 |
-
"depth": "checkpoints/t2i/depth_MR.safetensors",
|
| 19 |
-
}
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def resize_image_to_16_multiple(image, condition_type='canny'):
|
| 23 |
-
if isinstance(image, np.ndarray):
|
| 24 |
-
image = Image.fromarray(image)
|
| 25 |
-
# image = Image.open(image_path)
|
| 26 |
-
width, height = image.size
|
| 27 |
-
|
| 28 |
-
if condition_type == 'depth': # The depth model requires a side length that is a multiple of 32
|
| 29 |
-
new_width = (width + 31) // 32 * 32
|
| 30 |
-
new_height = (height + 31) // 32 * 32
|
| 31 |
-
else:
|
| 32 |
-
new_width = (width + 15) // 16 * 16
|
| 33 |
-
new_height = (height + 15) // 16 * 16
|
| 34 |
-
|
| 35 |
-
resized_image = image.resize((new_width, new_height))
|
| 36 |
-
return resized_image
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
class Model:
|
| 40 |
-
|
| 41 |
-
def __init__(self):
|
| 42 |
-
self.device = torch.device(
|
| 43 |
-
"cuda:0" if torch.cuda.is_available() else "cpu")
|
| 44 |
-
self.base_model_id = ""
|
| 45 |
-
self.task_name = ""
|
| 46 |
-
self.vq_model = self.load_vq()
|
| 47 |
-
self.t5_model = self.load_t5()
|
| 48 |
-
self.gpt_model_canny = self.load_gpt(condition_type='canny')
|
| 49 |
-
self.gpt_model_depth = self.load_gpt(condition_type='depth')
|
| 50 |
-
self.get_control_canny = CannyDetector()
|
| 51 |
-
self.get_control_depth = MidasDetector(device=self.device)
|
| 52 |
-
|
| 53 |
-
def load_vq(self):
|
| 54 |
-
vq_model = VQ_models["VQ-16"](codebook_size=16384,
|
| 55 |
-
codebook_embed_dim=8)
|
| 56 |
-
vq_model.to(self.device)
|
| 57 |
-
vq_model.eval()
|
| 58 |
-
checkpoint = torch.load(f"checkpoints/vq_ds16_t2i.pt",
|
| 59 |
-
map_location="cpu")
|
| 60 |
-
vq_model.load_state_dict(checkpoint["model"])
|
| 61 |
-
del checkpoint
|
| 62 |
-
print(f"image tokenizer is loaded")
|
| 63 |
-
return vq_model
|
| 64 |
-
|
| 65 |
-
def load_gpt(self, condition_type='canny'):
|
| 66 |
-
gpt_ckpt = models[condition_type]
|
| 67 |
-
precision = torch.bfloat16
|
| 68 |
-
latent_size = 768 // 16
|
| 69 |
-
gpt_model = GPT_models["GPT-XL"](
|
| 70 |
-
block_size=latent_size**2,
|
| 71 |
-
cls_token_num=120,
|
| 72 |
-
model_type='t2i',
|
| 73 |
-
condition_type=condition_type,
|
| 74 |
-
).to(device=self.device, dtype=precision)
|
| 75 |
-
|
| 76 |
-
model_weight = load_file(gpt_ckpt)
|
| 77 |
-
gpt_model.load_state_dict(model_weight, strict=False)
|
| 78 |
-
gpt_model.eval()
|
| 79 |
-
print(f"gpt model is loaded")
|
| 80 |
-
return gpt_model
|
| 81 |
-
|
| 82 |
-
def load_t5(self):
|
| 83 |
-
precision = torch.bfloat16
|
| 84 |
-
t5_model = T5Embedder(
|
| 85 |
-
device=self.device,
|
| 86 |
-
local_cache=True,
|
| 87 |
-
|
| 88 |
-
dir_or_name='flan-t5-xl',
|
| 89 |
-
torch_dtype=precision,
|
| 90 |
-
model_max_length=120,
|
| 91 |
-
)
|
| 92 |
-
return t5_model
|
| 93 |
-
|
| 94 |
-
@torch.no_grad()
|
| 95 |
-
@spaces.GPU(enable_queue=True)
|
| 96 |
-
def process_canny(
|
| 97 |
-
self,
|
| 98 |
-
image: np.ndarray,
|
| 99 |
-
prompt: str,
|
| 100 |
-
cfg_scale: float,
|
| 101 |
-
temperature: float,
|
| 102 |
-
top_k: int,
|
| 103 |
-
top_p: int,
|
| 104 |
-
seed: int,
|
| 105 |
-
low_threshold: int,
|
| 106 |
-
high_threshold: int,
|
| 107 |
-
) -> list[PIL.Image.Image]:
|
| 108 |
-
|
| 109 |
-
image = resize_image_to_16_multiple(image, 'canny')
|
| 110 |
-
W, H = image.size
|
| 111 |
-
print(W, H)
|
| 112 |
-
condition_img = self.get_control_canny(np.array(image), low_threshold,
|
| 113 |
-
high_threshold)
|
| 114 |
-
condition_img = torch.from_numpy(condition_img[None, None,
|
| 115 |
-
...]).repeat(
|
| 116 |
-
2, 3, 1, 1)
|
| 117 |
-
condition_img = condition_img.to(self.device)
|
| 118 |
-
condition_img = 2 * (condition_img / 255 - 0.5)
|
| 119 |
-
prompts = [prompt] * 2
|
| 120 |
-
caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
|
| 121 |
-
|
| 122 |
-
print(f"processing left-padding...")
|
| 123 |
-
new_emb_masks = torch.flip(emb_masks, dims=[-1])
|
| 124 |
-
new_caption_embs = []
|
| 125 |
-
for idx, (caption_emb,
|
| 126 |
-
emb_mask) in enumerate(zip(caption_embs, emb_masks)):
|
| 127 |
-
valid_num = int(emb_mask.sum().item())
|
| 128 |
-
print(f' prompt {idx} token len: {valid_num}')
|
| 129 |
-
new_caption_emb = torch.cat(
|
| 130 |
-
[caption_emb[valid_num:], caption_emb[:valid_num]])
|
| 131 |
-
new_caption_embs.append(new_caption_emb)
|
| 132 |
-
new_caption_embs = torch.stack(new_caption_embs)
|
| 133 |
-
c_indices = new_caption_embs * new_emb_masks[:, :, None]
|
| 134 |
-
c_emb_masks = new_emb_masks
|
| 135 |
-
qzshape = [len(c_indices), 8, H // 16, W // 16]
|
| 136 |
-
t1 = time.time()
|
| 137 |
-
index_sample = generate(
|
| 138 |
-
self.gpt_model_canny,
|
| 139 |
-
c_indices,
|
| 140 |
-
(H // 16) * (W // 16),
|
| 141 |
-
c_emb_masks,
|
| 142 |
-
condition=condition_img,
|
| 143 |
-
cfg_scale=cfg_scale,
|
| 144 |
-
temperature=temperature,
|
| 145 |
-
top_k=top_k,
|
| 146 |
-
top_p=top_p,
|
| 147 |
-
sample_logits=True,
|
| 148 |
-
)
|
| 149 |
-
sampling_time = time.time() - t1
|
| 150 |
-
print(f"Full sampling takes about {sampling_time:.2f} seconds.")
|
| 151 |
-
|
| 152 |
-
t2 = time.time()
|
| 153 |
-
print(index_sample.shape)
|
| 154 |
-
samples = self.vq_model.decode_code(
|
| 155 |
-
index_sample, qzshape) # output value is between [-1, 1]
|
| 156 |
-
decoder_time = time.time() - t2
|
| 157 |
-
print(f"decoder takes about {decoder_time:.2f} seconds.")
|
| 158 |
-
|
| 159 |
-
samples = torch.cat((condition_img[0:1], samples), dim=0)
|
| 160 |
-
samples = 255 * (samples * 0.5 + 0.5)
|
| 161 |
-
samples = [image] + [
|
| 162 |
-
Image.fromarray(
|
| 163 |
-
sample.permute(1, 2, 0).cpu().detach().numpy().clip(
|
| 164 |
-
0, 255).astype(np.uint8)) for sample in samples
|
| 165 |
-
]
|
| 166 |
-
del condition_img
|
| 167 |
-
torch.cuda.empty_cache()
|
| 168 |
-
return samples
|
| 169 |
-
|
| 170 |
-
@torch.no_grad()
|
| 171 |
-
@spaces.GPU(enable_queue=True)
|
| 172 |
-
def process_depth(
|
| 173 |
-
self,
|
| 174 |
-
image: np.ndarray,
|
| 175 |
-
prompt: str,
|
| 176 |
-
cfg_scale: float,
|
| 177 |
-
temperature: float,
|
| 178 |
-
top_k: int,
|
| 179 |
-
top_p: int,
|
| 180 |
-
seed: int,
|
| 181 |
-
) -> list[PIL.Image.Image]:
|
| 182 |
-
image = resize_image_to_16_multiple(image, 'depth')
|
| 183 |
-
W, H = image.size
|
| 184 |
-
print(W, H)
|
| 185 |
-
image_tensor = torch.from_numpy(np.array(image)).to(self.device)
|
| 186 |
-
condition_img = torch.from_numpy(
|
| 187 |
-
self.get_control_depth(image_tensor)).unsqueeze(0)
|
| 188 |
-
condition_img = condition_img.unsqueeze(0).repeat(2, 3, 1, 1)
|
| 189 |
-
condition_img = condition_img.to(self.device)
|
| 190 |
-
condition_img = 2 * (condition_img / 255 - 0.5)
|
| 191 |
-
prompts = [prompt] * 2
|
| 192 |
-
caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
|
| 193 |
-
|
| 194 |
-
print(f"processing left-padding...")
|
| 195 |
-
new_emb_masks = torch.flip(emb_masks, dims=[-1])
|
| 196 |
-
new_caption_embs = []
|
| 197 |
-
for idx, (caption_emb,
|
| 198 |
-
emb_mask) in enumerate(zip(caption_embs, emb_masks)):
|
| 199 |
-
valid_num = int(emb_mask.sum().item())
|
| 200 |
-
print(f' prompt {idx} token len: {valid_num}')
|
| 201 |
-
new_caption_emb = torch.cat(
|
| 202 |
-
[caption_emb[valid_num:], caption_emb[:valid_num]])
|
| 203 |
-
new_caption_embs.append(new_caption_emb)
|
| 204 |
-
new_caption_embs = torch.stack(new_caption_embs)
|
| 205 |
-
|
| 206 |
-
c_indices = new_caption_embs * new_emb_masks[:, :, None]
|
| 207 |
-
c_emb_masks = new_emb_masks
|
| 208 |
-
qzshape = [len(c_indices), 8, H // 16, W // 16]
|
| 209 |
-
t1 = time.time()
|
| 210 |
-
index_sample = generate(
|
| 211 |
-
self.gpt_model_depth,
|
| 212 |
-
c_indices,
|
| 213 |
-
(H // 16) * (W // 16),
|
| 214 |
-
c_emb_masks,
|
| 215 |
-
condition=condition_img,
|
| 216 |
-
cfg_scale=cfg_scale,
|
| 217 |
-
temperature=temperature,
|
| 218 |
-
top_k=top_k,
|
| 219 |
-
top_p=top_p,
|
| 220 |
-
sample_logits=True,
|
| 221 |
-
)
|
| 222 |
-
sampling_time = time.time() - t1
|
| 223 |
-
print(f"Full sampling takes about {sampling_time:.2f} seconds.")
|
| 224 |
-
|
| 225 |
-
t2 = time.time()
|
| 226 |
-
print(index_sample.shape)
|
| 227 |
-
samples = self.vq_model.decode_code(index_sample, qzshape)
|
| 228 |
-
decoder_time = time.time() - t2
|
| 229 |
-
print(f"decoder takes about {decoder_time:.2f} seconds.")
|
| 230 |
-
condition_img = condition_img.cpu()
|
| 231 |
-
samples = samples.cpu()
|
| 232 |
-
samples = torch.cat((condition_img[0:1], samples), dim=0)
|
| 233 |
-
samples = 255 * (samples * 0.5 + 0.5)
|
| 234 |
-
samples = [image] + [
|
| 235 |
-
Image.fromarray(
|
| 236 |
-
sample.permute(1, 2, 0).numpy().clip(0, 255).astype(np.uint8))
|
| 237 |
-
for sample in samples
|
| 238 |
-
]
|
| 239 |
-
del image_tensor
|
| 240 |
-
del condition_img
|
| 241 |
-
torch.cuda.empty_cache()
|
| 242 |
-
return samples
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
import spaces
|
| 3 |
+
from safetensors.torch import load_file
|
| 4 |
+
from autoregressive.models.gpt_t2i import GPT_models
|
| 5 |
+
from tokenizer.tokenizer_image.vq_model import VQ_models
|
| 6 |
+
from language.t5 import T5Embedder
|
| 7 |
+
import torch
|
| 8 |
+
import numpy as np
|
| 9 |
+
import PIL
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from condition.canny import CannyDetector
|
| 12 |
+
import time
|
| 13 |
+
from autoregressive.models.generate import generate
|
| 14 |
+
from condition.midas.depth import MidasDetector
|
| 15 |
+
|
| 16 |
+
models = {
|
| 17 |
+
"canny": "checkpoints/t2i/canny_MR.safetensors",
|
| 18 |
+
"depth": "checkpoints/t2i/depth_MR.safetensors",
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def resize_image_to_16_multiple(image, condition_type='canny'):
|
| 23 |
+
if isinstance(image, np.ndarray):
|
| 24 |
+
image = Image.fromarray(image)
|
| 25 |
+
# image = Image.open(image_path)
|
| 26 |
+
width, height = image.size
|
| 27 |
+
|
| 28 |
+
if condition_type == 'depth': # The depth model requires a side length that is a multiple of 32
|
| 29 |
+
new_width = (width + 31) // 32 * 32
|
| 30 |
+
new_height = (height + 31) // 32 * 32
|
| 31 |
+
else:
|
| 32 |
+
new_width = (width + 15) // 16 * 16
|
| 33 |
+
new_height = (height + 15) // 16 * 16
|
| 34 |
+
|
| 35 |
+
resized_image = image.resize((new_width, new_height))
|
| 36 |
+
return resized_image
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class Model:
|
| 40 |
+
|
| 41 |
+
def __init__(self):
|
| 42 |
+
self.device = torch.device(
|
| 43 |
+
"cuda:0" if torch.cuda.is_available() else "cpu")
|
| 44 |
+
self.base_model_id = ""
|
| 45 |
+
self.task_name = ""
|
| 46 |
+
self.vq_model = self.load_vq()
|
| 47 |
+
self.t5_model = self.load_t5()
|
| 48 |
+
self.gpt_model_canny = self.load_gpt(condition_type='canny')
|
| 49 |
+
self.gpt_model_depth = self.load_gpt(condition_type='depth')
|
| 50 |
+
self.get_control_canny = CannyDetector()
|
| 51 |
+
self.get_control_depth = MidasDetector(device=self.device)
|
| 52 |
+
|
| 53 |
+
def load_vq(self):
|
| 54 |
+
vq_model = VQ_models["VQ-16"](codebook_size=16384,
|
| 55 |
+
codebook_embed_dim=8)
|
| 56 |
+
vq_model.to(self.device)
|
| 57 |
+
vq_model.eval()
|
| 58 |
+
checkpoint = torch.load(f"checkpoints/vq_ds16_t2i.pt",
|
| 59 |
+
map_location="cpu")
|
| 60 |
+
vq_model.load_state_dict(checkpoint["model"])
|
| 61 |
+
del checkpoint
|
| 62 |
+
print(f"image tokenizer is loaded")
|
| 63 |
+
return vq_model
|
| 64 |
+
|
| 65 |
+
def load_gpt(self, condition_type='canny'):
|
| 66 |
+
gpt_ckpt = models[condition_type]
|
| 67 |
+
precision = torch.bfloat16
|
| 68 |
+
latent_size = 768 // 16
|
| 69 |
+
gpt_model = GPT_models["GPT-XL"](
|
| 70 |
+
block_size=latent_size**2,
|
| 71 |
+
cls_token_num=120,
|
| 72 |
+
model_type='t2i',
|
| 73 |
+
condition_type=condition_type,
|
| 74 |
+
).to(device=self.device, dtype=precision)
|
| 75 |
+
|
| 76 |
+
model_weight = load_file(gpt_ckpt)
|
| 77 |
+
gpt_model.load_state_dict(model_weight, strict=False)
|
| 78 |
+
gpt_model.eval()
|
| 79 |
+
print(f"gpt model is loaded")
|
| 80 |
+
return gpt_model
|
| 81 |
+
|
| 82 |
+
def load_t5(self):
|
| 83 |
+
precision = torch.bfloat16
|
| 84 |
+
t5_model = T5Embedder(
|
| 85 |
+
device=self.device,
|
| 86 |
+
local_cache=True,
|
| 87 |
+
cache_dir='checkpoints/t5-ckpt',
|
| 88 |
+
dir_or_name='google/flan-t5-xl',
|
| 89 |
+
torch_dtype=precision,
|
| 90 |
+
model_max_length=120,
|
| 91 |
+
)
|
| 92 |
+
return t5_model
|
| 93 |
+
|
| 94 |
+
@torch.no_grad()
|
| 95 |
+
@spaces.GPU(enable_queue=True)
|
| 96 |
+
def process_canny(
|
| 97 |
+
self,
|
| 98 |
+
image: np.ndarray,
|
| 99 |
+
prompt: str,
|
| 100 |
+
cfg_scale: float,
|
| 101 |
+
temperature: float,
|
| 102 |
+
top_k: int,
|
| 103 |
+
top_p: int,
|
| 104 |
+
seed: int,
|
| 105 |
+
low_threshold: int,
|
| 106 |
+
high_threshold: int,
|
| 107 |
+
) -> list[PIL.Image.Image]:
|
| 108 |
+
|
| 109 |
+
image = resize_image_to_16_multiple(image, 'canny')
|
| 110 |
+
W, H = image.size
|
| 111 |
+
print(W, H)
|
| 112 |
+
condition_img = self.get_control_canny(np.array(image), low_threshold,
|
| 113 |
+
high_threshold)
|
| 114 |
+
condition_img = torch.from_numpy(condition_img[None, None,
|
| 115 |
+
...]).repeat(
|
| 116 |
+
2, 3, 1, 1)
|
| 117 |
+
condition_img = condition_img.to(self.device)
|
| 118 |
+
condition_img = 2 * (condition_img / 255 - 0.5)
|
| 119 |
+
prompts = [prompt] * 2
|
| 120 |
+
caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
|
| 121 |
+
|
| 122 |
+
print(f"processing left-padding...")
|
| 123 |
+
new_emb_masks = torch.flip(emb_masks, dims=[-1])
|
| 124 |
+
new_caption_embs = []
|
| 125 |
+
for idx, (caption_emb,
|
| 126 |
+
emb_mask) in enumerate(zip(caption_embs, emb_masks)):
|
| 127 |
+
valid_num = int(emb_mask.sum().item())
|
| 128 |
+
print(f' prompt {idx} token len: {valid_num}')
|
| 129 |
+
new_caption_emb = torch.cat(
|
| 130 |
+
[caption_emb[valid_num:], caption_emb[:valid_num]])
|
| 131 |
+
new_caption_embs.append(new_caption_emb)
|
| 132 |
+
new_caption_embs = torch.stack(new_caption_embs)
|
| 133 |
+
c_indices = new_caption_embs * new_emb_masks[:, :, None]
|
| 134 |
+
c_emb_masks = new_emb_masks
|
| 135 |
+
qzshape = [len(c_indices), 8, H // 16, W // 16]
|
| 136 |
+
t1 = time.time()
|
| 137 |
+
index_sample = generate(
|
| 138 |
+
self.gpt_model_canny,
|
| 139 |
+
c_indices,
|
| 140 |
+
(H // 16) * (W // 16),
|
| 141 |
+
c_emb_masks,
|
| 142 |
+
condition=condition_img,
|
| 143 |
+
cfg_scale=cfg_scale,
|
| 144 |
+
temperature=temperature,
|
| 145 |
+
top_k=top_k,
|
| 146 |
+
top_p=top_p,
|
| 147 |
+
sample_logits=True,
|
| 148 |
+
)
|
| 149 |
+
sampling_time = time.time() - t1
|
| 150 |
+
print(f"Full sampling takes about {sampling_time:.2f} seconds.")
|
| 151 |
+
|
| 152 |
+
t2 = time.time()
|
| 153 |
+
print(index_sample.shape)
|
| 154 |
+
samples = self.vq_model.decode_code(
|
| 155 |
+
index_sample, qzshape) # output value is between [-1, 1]
|
| 156 |
+
decoder_time = time.time() - t2
|
| 157 |
+
print(f"decoder takes about {decoder_time:.2f} seconds.")
|
| 158 |
+
|
| 159 |
+
samples = torch.cat((condition_img[0:1], samples), dim=0)
|
| 160 |
+
samples = 255 * (samples * 0.5 + 0.5)
|
| 161 |
+
samples = [image] + [
|
| 162 |
+
Image.fromarray(
|
| 163 |
+
sample.permute(1, 2, 0).cpu().detach().numpy().clip(
|
| 164 |
+
0, 255).astype(np.uint8)) for sample in samples
|
| 165 |
+
]
|
| 166 |
+
del condition_img
|
| 167 |
+
torch.cuda.empty_cache()
|
| 168 |
+
return samples
|
| 169 |
+
|
| 170 |
+
@torch.no_grad()
|
| 171 |
+
@spaces.GPU(enable_queue=True)
|
| 172 |
+
def process_depth(
|
| 173 |
+
self,
|
| 174 |
+
image: np.ndarray,
|
| 175 |
+
prompt: str,
|
| 176 |
+
cfg_scale: float,
|
| 177 |
+
temperature: float,
|
| 178 |
+
top_k: int,
|
| 179 |
+
top_p: int,
|
| 180 |
+
seed: int,
|
| 181 |
+
) -> list[PIL.Image.Image]:
|
| 182 |
+
image = resize_image_to_16_multiple(image, 'depth')
|
| 183 |
+
W, H = image.size
|
| 184 |
+
print(W, H)
|
| 185 |
+
image_tensor = torch.from_numpy(np.array(image)).to(self.device)
|
| 186 |
+
condition_img = torch.from_numpy(
|
| 187 |
+
self.get_control_depth(image_tensor)).unsqueeze(0)
|
| 188 |
+
condition_img = condition_img.unsqueeze(0).repeat(2, 3, 1, 1)
|
| 189 |
+
condition_img = condition_img.to(self.device)
|
| 190 |
+
condition_img = 2 * (condition_img / 255 - 0.5)
|
| 191 |
+
prompts = [prompt] * 2
|
| 192 |
+
caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
|
| 193 |
+
|
| 194 |
+
print(f"processing left-padding...")
|
| 195 |
+
new_emb_masks = torch.flip(emb_masks, dims=[-1])
|
| 196 |
+
new_caption_embs = []
|
| 197 |
+
for idx, (caption_emb,
|
| 198 |
+
emb_mask) in enumerate(zip(caption_embs, emb_masks)):
|
| 199 |
+
valid_num = int(emb_mask.sum().item())
|
| 200 |
+
print(f' prompt {idx} token len: {valid_num}')
|
| 201 |
+
new_caption_emb = torch.cat(
|
| 202 |
+
[caption_emb[valid_num:], caption_emb[:valid_num]])
|
| 203 |
+
new_caption_embs.append(new_caption_emb)
|
| 204 |
+
new_caption_embs = torch.stack(new_caption_embs)
|
| 205 |
+
|
| 206 |
+
c_indices = new_caption_embs * new_emb_masks[:, :, None]
|
| 207 |
+
c_emb_masks = new_emb_masks
|
| 208 |
+
qzshape = [len(c_indices), 8, H // 16, W // 16]
|
| 209 |
+
t1 = time.time()
|
| 210 |
+
index_sample = generate(
|
| 211 |
+
self.gpt_model_depth,
|
| 212 |
+
c_indices,
|
| 213 |
+
(H // 16) * (W // 16),
|
| 214 |
+
c_emb_masks,
|
| 215 |
+
condition=condition_img,
|
| 216 |
+
cfg_scale=cfg_scale,
|
| 217 |
+
temperature=temperature,
|
| 218 |
+
top_k=top_k,
|
| 219 |
+
top_p=top_p,
|
| 220 |
+
sample_logits=True,
|
| 221 |
+
)
|
| 222 |
+
sampling_time = time.time() - t1
|
| 223 |
+
print(f"Full sampling takes about {sampling_time:.2f} seconds.")
|
| 224 |
+
|
| 225 |
+
t2 = time.time()
|
| 226 |
+
print(index_sample.shape)
|
| 227 |
+
samples = self.vq_model.decode_code(index_sample, qzshape)
|
| 228 |
+
decoder_time = time.time() - t2
|
| 229 |
+
print(f"decoder takes about {decoder_time:.2f} seconds.")
|
| 230 |
+
condition_img = condition_img.cpu()
|
| 231 |
+
samples = samples.cpu()
|
| 232 |
+
samples = torch.cat((condition_img[0:1], samples), dim=0)
|
| 233 |
+
samples = 255 * (samples * 0.5 + 0.5)
|
| 234 |
+
samples = [image] + [
|
| 235 |
+
Image.fromarray(
|
| 236 |
+
sample.permute(1, 2, 0).numpy().clip(0, 255).astype(np.uint8))
|
| 237 |
+
for sample in samples
|
| 238 |
+
]
|
| 239 |
+
del image_tensor
|
| 240 |
+
del condition_img
|
| 241 |
+
torch.cuda.empty_cache()
|
| 242 |
+
return samples
|