Spaces:
Runtime error
Runtime error
| import gc | |
| import cv2 | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from controlnet_aux import ( | |
| CannyDetector, | |
| # ContentShuffleDetector, | |
| HEDdetector, | |
| # LineartAnimeDetector, | |
| LineartDetector, | |
| # MidasDetector, | |
| # MLSDdetector, | |
| # NormalBaeDetector, | |
| # OpenposeDetector, | |
| # PidiNetDetector, | |
| ) | |
| from controlnet_aux.util import HWC3 | |
| from transformers import pipeline | |
| # from cv_utils import resize_image | |
| # from depth_estimator import DepthEstimator | |
| class DepthEstimator: | |
| def __init__(self): | |
| self.model = pipeline("depth-estimation") | |
| def __call__(self, image: np.ndarray, **kwargs) -> PIL.Image.Image: | |
| detect_resolution = kwargs.pop("detect_resolution", 512) | |
| image_resolution = kwargs.pop("image_resolution", 512) | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=detect_resolution) | |
| image = PIL.Image.fromarray(image) | |
| image = self.model(image) | |
| image = image["depth"] | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=image_resolution) | |
| return PIL.Image.fromarray(image) | |
| def resize_image(input_image, resolution, interpolation=None): | |
| H, W, C = input_image.shape | |
| H = float(H) | |
| W = float(W) | |
| k = float(resolution) / max(H, W) | |
| H *= k | |
| W *= k | |
| H = int(np.round(H / 64.0)) * 64 | |
| W = int(np.round(W / 64.0)) * 64 | |
| if interpolation is None: | |
| interpolation = cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA | |
| img = cv2.resize(input_image, (W, H), interpolation=interpolation) | |
| return img | |
| class Preprocessor: | |
| # MODEL_ID = "condition/ckpts" | |
| MODEL_ID = "lllyasviel/Annotators" | |
| def __init__(self): | |
| self.model = None | |
| self.name = "" | |
| def load(self, name: str) -> None: | |
| if name == self.name: | |
| return | |
| if name == "HED": | |
| self.model = HEDdetector.from_pretrained(self.MODEL_ID) | |
| # elif name == "Midas": | |
| # self.model = MidasDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "Lineart": | |
| self.model = LineartDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "Canny": | |
| self.model = CannyDetector() | |
| elif name == "Depth": | |
| self.model = DepthEstimator() | |
| # self.model = MidasDetector.from_pretrained(self.MODEL_ID) | |
| else: | |
| raise ValueError | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| self.name = name | |
| def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image: | |
| if self.name == "Canny": | |
| if "detect_resolution" in kwargs: | |
| detect_resolution = kwargs.pop("detect_resolution") | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=detect_resolution) | |
| image = self.model(image, **kwargs) | |
| return PIL.Image.fromarray(image) | |
| elif self.name == "Midas": | |
| detect_resolution = kwargs.pop("detect_resolution", 512) | |
| image_resolution = kwargs.pop("image_resolution", 512) | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=detect_resolution) | |
| image = self.model(image, **kwargs) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=image_resolution) | |
| return PIL.Image.fromarray(image) | |
| else: | |
| return self.model(image, **kwargs) |