Spaces:
Runtime error
Runtime error
| from controlnet_aux import LineartDetector | |
| import torch | |
| import cv2 | |
| import numpy as np | |
| from transformers import DPTImageProcessor, DPTForDepthEstimation | |
| class Depth: | |
| def __init__(self, device): | |
| self.model = DPTForDepthEstimation.from_pretrained("condition/ckpts/dpt_large") | |
| def __call__(self, input_image): | |
| """ | |
| input: tensor() | |
| """ | |
| control_image = self.model(input_image) | |
| return np.array(control_image) | |
| if __name__ == '__main__': | |
| import matplotlib.pyplot as plt | |
| from tqdm import tqdm | |
| from transformers import DPTImageProcessor, DPTForDepthEstimation | |
| from PIL import Image | |
| image = Image.open('condition/example/t2i/depth/depth.png') | |
| img = cv2.imread('condition/example/t2i/depth/depth.png') | |
| processor = DPTImageProcessor.from_pretrained("condition/ckpts/dpt_large") | |
| model = DPTForDepthEstimation.from_pretrained("condition/ckpts/dpt_large") | |
| inputs = torch.from_numpy(np.array(img)).permute(2,0,1).unsqueeze(0).float()# | |
| inputs = 2*(inputs/255 - 0.5) | |
| inputs = processor(images=image, return_tensors="pt", size=(512,512)) | |
| print(inputs) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| predicted_depth = outputs.predicted_depth | |
| print(predicted_depth.shape) | |
| prediction = torch.nn.functional.interpolate( | |
| predicted_depth.unsqueeze(1), | |
| size=image.size[::-1], | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| output = prediction.squeeze().cpu().numpy() | |
| formatted = (output * 255 / np.max(output)).astype("uint8") | |
| depth = Image.fromarray(formatted) | |
| depth.save('condition/example/t2i/depth/example_depth.jpg') |