Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from tokenizer.vqgan.layer import Encoder, Decoder | |
| from tokenizer.vqgan.quantize import VectorQuantizer2 as VectorQuantizer | |
| VQGAN_FROM_TAMING = { | |
| 'vqgan_imagenet_f16_1024': ( | |
| 'tokenizer/vqgan/configs/vqgan_imagenet_f16_1024.yaml', | |
| 'pretrained_models/vqgan_imagenet_f16_1024/ckpts/last.pth'), | |
| 'vqgan_imagenet_f16_16384': ( | |
| 'tokenizer/vqgan/configs/vqgan_imagenet_f16_16384.yaml', | |
| 'pretrained_models/vqgan_imagenet_f16_16384/ckpts/last.pth'), | |
| 'vqgan_openimage_f8_256': ( | |
| 'tokenizer/vqgan/configs/vqgan_openimage_f8_256.yaml', | |
| 'pretrained_models/vq-f8-n256/model.pth'), | |
| 'vqgan_openimage_f8_16384': ( | |
| 'tokenizer/vqgan/configs/vqgan_openimage_f8_16384.yaml', | |
| 'pretrained_models/vq-f8/model.pth'), | |
| } | |
| class VQModel(nn.Module): | |
| def __init__(self, | |
| ddconfig, | |
| n_embed, | |
| embed_dim, | |
| ckpt_path=None, | |
| ignore_keys=[], | |
| image_key="image", | |
| colorize_nlabels=None, | |
| monitor=None, | |
| remap=None, | |
| sane_index_shape=False, # tell vector quantizer to return indices as bhw | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.image_key = image_key | |
| self.encoder = Encoder(**ddconfig) | |
| self.decoder = Decoder(**ddconfig) | |
| self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, | |
| remap=remap, sane_index_shape=sane_index_shape) | |
| self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) | |
| self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
| if ckpt_path is not None: | |
| self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
| self.image_key = image_key | |
| if colorize_nlabels is not None: | |
| assert type(colorize_nlabels)==int | |
| self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
| if monitor is not None: | |
| self.monitor = monitor | |
| def init_from_ckpt(self, path, ignore_keys=list(), logging=True): | |
| model_weight = torch.load(path, map_location="cpu")["state_dict"] | |
| keys = list(model_weight.keys()) | |
| for k in keys: | |
| for ik in ignore_keys: | |
| if k.startswith(ik): | |
| print("Deleting key {} from state_dict.".format(k)) | |
| del model_weight[k] | |
| missing, unexpected = self.load_state_dict(model_weight, strict=False) | |
| if logging: | |
| print(f"Restored from {path}") | |
| print(f"Missing Keys in State Dict: {missing}") | |
| print(f"Unexpected Keys in State Dict: {unexpected}") | |
| def encode(self, x): | |
| h = self.encoder(x) | |
| h = self.quant_conv(h) | |
| quant, emb_loss, info = self.quantize(h) | |
| return quant, emb_loss, info | |
| def decode(self, quant): | |
| quant = self.post_quant_conv(quant) | |
| dec = self.decoder(quant) | |
| return dec | |
| def decode_code(self, code_b, shape, channel_first=True): | |
| quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first) | |
| dec = self.decode(quant_b) | |
| return dec | |
| def forward(self, input): | |
| quant, diff, _ = self.encode(input) | |
| dec = self.decode(quant) | |
| return dec, diff | |