Spaces:
Runtime error
Runtime error
init
Browse files- app.py +23 -73
- src/moviedubber/infer/utils_infer.py +4 -42
- src/moviedubber/infer_with_mmlm_result.py +46 -26
app.py
CHANGED
|
@@ -2,17 +2,14 @@ import os
|
|
| 2 |
import os.path as osp
|
| 3 |
import sys
|
| 4 |
import tempfile
|
|
|
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
-
import librosa
|
| 8 |
import soundfile
|
| 9 |
import torch
|
| 10 |
import torch.nn.functional as F
|
| 11 |
-
import torchaudio
|
| 12 |
from huggingface_hub import snapshot_download
|
| 13 |
-
from
|
| 14 |
-
from pydub import AudioSegment
|
| 15 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, AutoTokenizer, pipeline
|
| 16 |
|
| 17 |
from src.internvl.eval import load_video
|
| 18 |
from src.moviedubber.infer.utils_infer import (
|
|
@@ -22,7 +19,7 @@ from src.moviedubber.infer.utils_infer import (
|
|
| 22 |
sway_sampling_coef,
|
| 23 |
)
|
| 24 |
from src.moviedubber.infer.video_preprocess import VideoFeatureExtractor
|
| 25 |
-
from src.moviedubber.infer_with_mmlm_result import
|
| 26 |
from src.moviedubber.model.utils import convert_char_to_pinyin
|
| 27 |
|
| 28 |
|
|
@@ -32,25 +29,6 @@ sys.path.append("src/third_party/BigVGAN")
|
|
| 32 |
from InternVL.internvl_chat.internvl.model.internvl_chat.modeling_internvl_chat import InternVLChatModel # type: ignore
|
| 33 |
|
| 34 |
|
| 35 |
-
def load_asr_model(model_id="openai/whisper-large-v3-turbo"):
|
| 36 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 37 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 38 |
-
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 39 |
-
).to(device)
|
| 40 |
-
|
| 41 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 42 |
-
|
| 43 |
-
pipe = pipeline(
|
| 44 |
-
"automatic-speech-recognition",
|
| 45 |
-
model=model,
|
| 46 |
-
tokenizer=processor.tokenizer,
|
| 47 |
-
feature_extractor=processor.feature_extractor,
|
| 48 |
-
torch_dtype=torch_dtype,
|
| 49 |
-
device=device,
|
| 50 |
-
)
|
| 51 |
-
return pipe
|
| 52 |
-
|
| 53 |
-
|
| 54 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
|
| 56 |
repo_local_path = snapshot_download(repo_id="woak-oa/DeepDubber-V1")
|
|
@@ -69,7 +47,6 @@ generation_config = dict(max_new_tokens=1024, do_sample=False)
|
|
| 69 |
|
| 70 |
|
| 71 |
ema_model, vocoder, ort_session = load_models(repo_local_path, device=device)
|
| 72 |
-
asr_pipe = load_asr_model()
|
| 73 |
|
| 74 |
videofeature_extractor = VideoFeatureExtractor(device=device)
|
| 75 |
|
|
@@ -106,60 +83,26 @@ def deepdubber(video_path: str, subtitle_text: str, audio_path: str = None) -> s
|
|
| 106 |
gen_clip = videofeature_extractor.extract_features(video_path)
|
| 107 |
gen_text = subtitle_text
|
| 108 |
|
| 109 |
-
|
| 110 |
-
gen_audio_len = int(
|
| 111 |
|
| 112 |
gen_clip = gen_clip.unsqueeze(0).to(device=device, dtype=torch.float32).transpose(1, 2)
|
| 113 |
gen_clip = F.interpolate(gen_clip, size=(gen_audio_len,), mode="linear", align_corners=False).transpose(1, 2)
|
| 114 |
|
| 115 |
-
ref_audio_len = None
|
| 116 |
if audio_path is not None:
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
if audio_path.endswith(".mp3"):
|
| 120 |
-
audio = AudioSegment.from_mp3(audio_path)
|
| 121 |
-
|
| 122 |
-
wav_file = audio_path.replace(".mp3", ".wav")
|
| 123 |
-
audio.export(wav_file, format="wav")
|
| 124 |
-
else:
|
| 125 |
-
wav_file = audio_path
|
| 126 |
-
|
| 127 |
-
ref_text = asr_pipe(librosa.load(wav_file, sr=16000)[0], generate_kwargs={"language": "english"})["text"]
|
| 128 |
-
ref_text = ref_text.replace("\n", " ").replace("\r", " ")
|
| 129 |
-
print(f"Reference text: {ref_text}")
|
| 130 |
-
|
| 131 |
-
spk_emb = get_spk_emb(wav_file, ort_session)
|
| 132 |
spk_emb = torch.tensor(spk_emb).to(device=device, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
| 133 |
-
|
| 134 |
-
audio_data, sr = torchaudio.load(wav_file)
|
| 135 |
-
resampler = torchaudio.transforms.Resample(sr, 24000)
|
| 136 |
-
if sr != 24000:
|
| 137 |
-
audio_data = resampler(audio_data)
|
| 138 |
-
|
| 139 |
-
if audio_data.shape[0] > 1:
|
| 140 |
-
audio_data = torch.mean(audio_data, dim=0, keepdim=True)
|
| 141 |
-
|
| 142 |
-
audio_data = audio_data.to(device)
|
| 143 |
-
|
| 144 |
-
ref_audio_len = int(audio_data.shape[-1] // 256)
|
| 145 |
-
ref_clip = torch.zeros((1, ref_audio_len, 768)).to(device=device)
|
| 146 |
-
|
| 147 |
-
gen_clip = torch.cat((gen_clip, ref_clip), dim=1)
|
| 148 |
-
|
| 149 |
-
gen_audio_len = ref_audio_len + gen_audio_len
|
| 150 |
-
|
| 151 |
-
gen_text = ref_text + " " + gen_text
|
| 152 |
-
|
| 153 |
else:
|
| 154 |
-
spk_emb = torch.zeros(
|
| 155 |
-
audio_data = torch.zeros((1, gen_audio_len, 100)).to(device=device)
|
| 156 |
|
| 157 |
gen_text_batches = chunk_text(gen_text, max_chars=1024)
|
| 158 |
final_text_list = convert_char_to_pinyin(gen_text_batches)
|
| 159 |
|
|
|
|
|
|
|
| 160 |
with torch.inference_mode():
|
| 161 |
generated, _ = ema_model.sample(
|
| 162 |
-
cond=
|
| 163 |
text=final_text_list,
|
| 164 |
clip=gen_clip,
|
| 165 |
spk_emb=spk_emb,
|
|
@@ -167,14 +110,11 @@ def deepdubber(video_path: str, subtitle_text: str, audio_path: str = None) -> s
|
|
| 167 |
steps=nfe_step,
|
| 168 |
cfg_strength=cfg_strength,
|
| 169 |
sway_sampling_coef=sway_sampling_coef,
|
| 170 |
-
no_ref_audio=
|
| 171 |
)
|
| 172 |
|
| 173 |
generated = generated.to(torch.float32)
|
| 174 |
|
| 175 |
-
if ref_audio_len is not None:
|
| 176 |
-
generated = generated[:, ref_audio_len:, :]
|
| 177 |
-
|
| 178 |
generated_mel_spec = generated.permute(0, 2, 1)
|
| 179 |
generated_wave = vocoder(generated_mel_spec)
|
| 180 |
|
|
@@ -185,7 +125,10 @@ def deepdubber(video_path: str, subtitle_text: str, audio_path: str = None) -> s
|
|
| 185 |
temp_wav_path = temp_wav_file.name
|
| 186 |
soundfile.write(temp_wav_path, generated_wave, samplerate=24000)
|
| 187 |
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
# Ensure the temporary file is deleted after use
|
| 191 |
os.remove(temp_wav_path)
|
|
@@ -194,7 +137,9 @@ def deepdubber(video_path: str, subtitle_text: str, audio_path: str = None) -> s
|
|
| 194 |
return response, concated_video
|
| 195 |
|
| 196 |
|
| 197 |
-
def process_video_dubbing(
|
|
|
|
|
|
|
| 198 |
try:
|
| 199 |
if not os.path.exists(video_path):
|
| 200 |
raise ValueError("Video file does not exist")
|
|
@@ -227,6 +172,7 @@ def create_ui():
|
|
| 227 |
label="Enter the subtitle", placeholder="Enter the subtitle to be dubbed...", lines=5
|
| 228 |
)
|
| 229 |
audio_input = gr.Audio(label="Upload speech prompt (Optional)", type="filepath")
|
|
|
|
| 230 |
|
| 231 |
process_btn = gr.Button("Start Dubbing")
|
| 232 |
|
|
@@ -240,16 +186,19 @@ def create_ui():
|
|
| 240 |
"datasets/CoTMovieDubbing/demo/v01input.mp4",
|
| 241 |
"it isn't simply a question of creating a robot who can love",
|
| 242 |
"datasets/CoTMovieDubbing/demo/speech_prompt_01.mp3",
|
|
|
|
| 243 |
],
|
| 244 |
[
|
| 245 |
"datasets/CoTMovieDubbing/demo/v02input.mp4",
|
| 246 |
"Me, I'd be happy with one who's not... fixed.",
|
| 247 |
"datasets/CoTMovieDubbing/demo/speech_prompt_02.mp3",
|
|
|
|
| 248 |
],
|
| 249 |
[
|
| 250 |
"datasets/CoTMovieDubbing/demo/v03input.mp4",
|
| 251 |
"Man, Papi. What am I gonna do?",
|
| 252 |
"datasets/CoTMovieDubbing/demo/speech_prompt_03.mp3",
|
|
|
|
| 253 |
],
|
| 254 |
]
|
| 255 |
|
|
@@ -259,6 +208,7 @@ def create_ui():
|
|
| 259 |
outputs=[output_response, output_video],
|
| 260 |
)
|
| 261 |
|
|
|
|
| 262 |
gr.Examples(examples=examples, inputs=[video_input, subtitle_input, audio_input])
|
| 263 |
|
| 264 |
return app
|
|
|
|
| 2 |
import os.path as osp
|
| 3 |
import sys
|
| 4 |
import tempfile
|
| 5 |
+
from uuid import uuid4
|
| 6 |
|
| 7 |
import gradio as gr
|
|
|
|
| 8 |
import soundfile
|
| 9 |
import torch
|
| 10 |
import torch.nn.functional as F
|
|
|
|
| 11 |
from huggingface_hub import snapshot_download
|
| 12 |
+
from transformers import AutoTokenizer
|
|
|
|
|
|
|
| 13 |
|
| 14 |
from src.internvl.eval import load_video
|
| 15 |
from src.moviedubber.infer.utils_infer import (
|
|
|
|
| 19 |
sway_sampling_coef,
|
| 20 |
)
|
| 21 |
from src.moviedubber.infer.video_preprocess import VideoFeatureExtractor
|
| 22 |
+
from src.moviedubber.infer_with_mmlm_result import get_spk_emb, get_video_duration, load_models, merge_video_audio
|
| 23 |
from src.moviedubber.model.utils import convert_char_to_pinyin
|
| 24 |
|
| 25 |
|
|
|
|
| 29 |
from InternVL.internvl_chat.internvl.model.internvl_chat.modeling_internvl_chat import InternVLChatModel # type: ignore
|
| 30 |
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
|
| 34 |
repo_local_path = snapshot_download(repo_id="woak-oa/DeepDubber-V1")
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
ema_model, vocoder, ort_session = load_models(repo_local_path, device=device)
|
|
|
|
| 50 |
|
| 51 |
videofeature_extractor = VideoFeatureExtractor(device=device)
|
| 52 |
|
|
|
|
| 83 |
gen_clip = videofeature_extractor.extract_features(video_path)
|
| 84 |
gen_text = subtitle_text
|
| 85 |
|
| 86 |
+
v_dur = get_video_duration(video_path)
|
| 87 |
+
gen_audio_len = int(v_dur * 24000 // 256)
|
| 88 |
|
| 89 |
gen_clip = gen_clip.unsqueeze(0).to(device=device, dtype=torch.float32).transpose(1, 2)
|
| 90 |
gen_clip = F.interpolate(gen_clip, size=(gen_audio_len,), mode="linear", align_corners=False).transpose(1, 2)
|
| 91 |
|
|
|
|
| 92 |
if audio_path is not None:
|
| 93 |
+
spk_emb = get_spk_emb(audio_path, ort_session)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
spk_emb = torch.tensor(spk_emb).to(device=device, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
else:
|
| 96 |
+
spk_emb = torch.zeros(1, 1, 256).to(device=device, dtype=torch.float32)
|
|
|
|
| 97 |
|
| 98 |
gen_text_batches = chunk_text(gen_text, max_chars=1024)
|
| 99 |
final_text_list = convert_char_to_pinyin(gen_text_batches)
|
| 100 |
|
| 101 |
+
cond = torch.zeros(1, gen_audio_len, 100).to(device)
|
| 102 |
+
|
| 103 |
with torch.inference_mode():
|
| 104 |
generated, _ = ema_model.sample(
|
| 105 |
+
cond=cond,
|
| 106 |
text=final_text_list,
|
| 107 |
clip=gen_clip,
|
| 108 |
spk_emb=spk_emb,
|
|
|
|
| 110 |
steps=nfe_step,
|
| 111 |
cfg_strength=cfg_strength,
|
| 112 |
sway_sampling_coef=sway_sampling_coef,
|
| 113 |
+
no_ref_audio=True,
|
| 114 |
)
|
| 115 |
|
| 116 |
generated = generated.to(torch.float32)
|
| 117 |
|
|
|
|
|
|
|
|
|
|
| 118 |
generated_mel_spec = generated.permute(0, 2, 1)
|
| 119 |
generated_wave = vocoder(generated_mel_spec)
|
| 120 |
|
|
|
|
| 125 |
temp_wav_path = temp_wav_file.name
|
| 126 |
soundfile.write(temp_wav_path, generated_wave, samplerate=24000)
|
| 127 |
|
| 128 |
+
video_out_path = os.path.join(out_dir, f"dubbed_video_{uuid4[:6]}.mp4")
|
| 129 |
+
concated_video = merge_video_audio(
|
| 130 |
+
video_path, temp_wav_path, video_out_path, 0, soundfile.info(temp_wav_path).duration
|
| 131 |
+
)
|
| 132 |
|
| 133 |
# Ensure the temporary file is deleted after use
|
| 134 |
os.remove(temp_wav_path)
|
|
|
|
| 137 |
return response, concated_video
|
| 138 |
|
| 139 |
|
| 140 |
+
def process_video_dubbing(
|
| 141 |
+
video_path: str, subtitle_text: str, audio_path: str = None, caption_input: str = None
|
| 142 |
+
) -> str:
|
| 143 |
try:
|
| 144 |
if not os.path.exists(video_path):
|
| 145 |
raise ValueError("Video file does not exist")
|
|
|
|
| 172 |
label="Enter the subtitle", placeholder="Enter the subtitle to be dubbed...", lines=5
|
| 173 |
)
|
| 174 |
audio_input = gr.Audio(label="Upload speech prompt (Optional)", type="filepath")
|
| 175 |
+
# caption_input = gr.Textbox(label="Enter the description of Video (Optional)", lines=1)
|
| 176 |
|
| 177 |
process_btn = gr.Button("Start Dubbing")
|
| 178 |
|
|
|
|
| 186 |
"datasets/CoTMovieDubbing/demo/v01input.mp4",
|
| 187 |
"it isn't simply a question of creating a robot who can love",
|
| 188 |
"datasets/CoTMovieDubbing/demo/speech_prompt_01.mp3",
|
| 189 |
+
# "datasets/CoTMovieDubbing/demo/speech_prompt_01.mp3",
|
| 190 |
],
|
| 191 |
[
|
| 192 |
"datasets/CoTMovieDubbing/demo/v02input.mp4",
|
| 193 |
"Me, I'd be happy with one who's not... fixed.",
|
| 194 |
"datasets/CoTMovieDubbing/demo/speech_prompt_02.mp3",
|
| 195 |
+
# "datasets/CoTMovieDubbing/demo/speech_prompt_02.mp3",
|
| 196 |
],
|
| 197 |
[
|
| 198 |
"datasets/CoTMovieDubbing/demo/v03input.mp4",
|
| 199 |
"Man, Papi. What am I gonna do?",
|
| 200 |
"datasets/CoTMovieDubbing/demo/speech_prompt_03.mp3",
|
| 201 |
+
# "datasets/CoTMovieDubbing/demo/speech_prompt_02.mp3",
|
| 202 |
],
|
| 203 |
]
|
| 204 |
|
|
|
|
| 208 |
outputs=[output_response, output_video],
|
| 209 |
)
|
| 210 |
|
| 211 |
+
# gr.Examples(examples=examples, inputs=[video_input, subtitle_input, audio_input, caption_input])
|
| 212 |
gr.Examples(examples=examples, inputs=[video_input, subtitle_input, audio_input])
|
| 213 |
|
| 214 |
return app
|
src/moviedubber/infer/utils_infer.py
CHANGED
|
@@ -89,48 +89,11 @@ def load_vocoder(local_path, device=device):
|
|
| 89 |
# load model checkpoint for inference
|
| 90 |
|
| 91 |
|
| 92 |
-
def load_checkpoint(model, ckpt_path, device: str, dtype=
|
| 93 |
-
if dtype is None:
|
| 94 |
-
dtype = (
|
| 95 |
-
torch.float16
|
| 96 |
-
if "cuda" in device
|
| 97 |
-
and torch.cuda.get_device_properties(device).major >= 6
|
| 98 |
-
and not torch.cuda.get_device_name().endswith("[ZLUDA]")
|
| 99 |
-
else torch.float32
|
| 100 |
-
)
|
| 101 |
model = model.to(dtype)
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
from safetensors.torch import load_file
|
| 106 |
-
|
| 107 |
-
checkpoint = load_file(ckpt_path, device=device)
|
| 108 |
-
else:
|
| 109 |
-
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
|
| 110 |
-
|
| 111 |
-
if use_ema:
|
| 112 |
-
if ckpt_type == "safetensors":
|
| 113 |
-
checkpoint = {"ema_model_state_dict": checkpoint}
|
| 114 |
-
checkpoint["model_state_dict"] = {
|
| 115 |
-
k.replace("ema_model.", ""): v
|
| 116 |
-
for k, v in checkpoint["ema_model_state_dict"].items()
|
| 117 |
-
if k not in ["initted", "step"]
|
| 118 |
-
}
|
| 119 |
-
|
| 120 |
-
# patch for backward compatibility, 305e3ea
|
| 121 |
-
for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
|
| 122 |
-
if key in checkpoint["model_state_dict"]:
|
| 123 |
-
del checkpoint["model_state_dict"][key]
|
| 124 |
-
|
| 125 |
-
state_dict_result = model.load_state_dict(checkpoint["model_state_dict"], strict=False)
|
| 126 |
-
if state_dict_result.unexpected_keys:
|
| 127 |
-
print("\nUnexpected keys in state_dict:", state_dict_result.unexpected_keys)
|
| 128 |
-
if state_dict_result.missing_keys:
|
| 129 |
-
print("\nMissing keys in state_dict:", state_dict_result.missing_keys)
|
| 130 |
-
else:
|
| 131 |
-
if ckpt_type == "safetensors":
|
| 132 |
-
checkpoint = {"model_state_dict": checkpoint}
|
| 133 |
-
model.load_state_dict(checkpoint["model_state_dict"], strict=True)
|
| 134 |
|
| 135 |
del checkpoint
|
| 136 |
torch.cuda.empty_cache()
|
|
@@ -149,7 +112,6 @@ def load_model(
|
|
| 149 |
mel_spec_type=mel_spec_type,
|
| 150 |
vocab_file="",
|
| 151 |
ode_method=ode_method,
|
| 152 |
-
use_ema=True,
|
| 153 |
device=device,
|
| 154 |
):
|
| 155 |
tokenizer = "custom"
|
|
@@ -181,7 +143,7 @@ def load_model(
|
|
| 181 |
).to(device)
|
| 182 |
|
| 183 |
dtype = torch.float32 if mel_spec_type == "bigvgan" else None
|
| 184 |
-
model = load_checkpoint(model, ckpt_path, device, dtype=dtype
|
| 185 |
|
| 186 |
return model
|
| 187 |
|
|
|
|
| 89 |
# load model checkpoint for inference
|
| 90 |
|
| 91 |
|
| 92 |
+
def load_checkpoint(model, ckpt_path, device: str, dtype=torch.float32):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
model = model.to(dtype)
|
| 94 |
|
| 95 |
+
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
|
| 96 |
+
model.load_state_dict(checkpoint, strict=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
del checkpoint
|
| 99 |
torch.cuda.empty_cache()
|
|
|
|
| 112 |
mel_spec_type=mel_spec_type,
|
| 113 |
vocab_file="",
|
| 114 |
ode_method=ode_method,
|
|
|
|
| 115 |
device=device,
|
| 116 |
):
|
| 117 |
tokenizer = "custom"
|
|
|
|
| 143 |
).to(device)
|
| 144 |
|
| 145 |
dtype = torch.float32 if mel_spec_type == "bigvgan" else None
|
| 146 |
+
model = load_checkpoint(model, ckpt_path, device, dtype=dtype)
|
| 147 |
|
| 148 |
return model
|
| 149 |
|
src/moviedubber/infer_with_mmlm_result.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
|
|
|
|
| 3 |
import onnxruntime
|
| 4 |
import torchaudio
|
| 5 |
import torchaudio.compliance.kaldi as kaldi
|
| 6 |
-
from moviepy import AudioFileClip, VideoFileClip
|
| 7 |
from omegaconf import OmegaConf
|
| 8 |
|
| 9 |
from src.moviedubber.infer.utils_infer import (
|
|
@@ -13,31 +14,50 @@ from src.moviedubber.infer.utils_infer import (
|
|
| 13 |
from src.moviedubber.model import ControlNetDiT, DiT
|
| 14 |
|
| 15 |
|
| 16 |
-
def
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
def get_spk_emb(audio_path, ort_session):
|
|
|
|
| 1 |
import os
|
| 2 |
+
import subprocess as sp
|
| 3 |
|
| 4 |
+
import cv2
|
| 5 |
import onnxruntime
|
| 6 |
import torchaudio
|
| 7 |
import torchaudio.compliance.kaldi as kaldi
|
|
|
|
| 8 |
from omegaconf import OmegaConf
|
| 9 |
|
| 10 |
from src.moviedubber.infer.utils_infer import (
|
|
|
|
| 14 |
from src.moviedubber.model import ControlNetDiT, DiT
|
| 15 |
|
| 16 |
|
| 17 |
+
def get_video_duration(video_path):
|
| 18 |
+
cap = cv2.VideoCapture(video_path)
|
| 19 |
+
|
| 20 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 21 |
+
|
| 22 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 23 |
+
|
| 24 |
+
duration = total_frames / fps
|
| 25 |
+
return duration
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def merge_video_audio(video_path, audio_path, output_path, start_time, duration):
|
| 29 |
+
command = [
|
| 30 |
+
"ffmpeg",
|
| 31 |
+
"-y",
|
| 32 |
+
"-ss",
|
| 33 |
+
str(start_time),
|
| 34 |
+
"-t",
|
| 35 |
+
str(duration),
|
| 36 |
+
"-i",
|
| 37 |
+
video_path,
|
| 38 |
+
"-i",
|
| 39 |
+
audio_path,
|
| 40 |
+
"-c:v",
|
| 41 |
+
"copy",
|
| 42 |
+
"-c:a",
|
| 43 |
+
"aac",
|
| 44 |
+
"-map",
|
| 45 |
+
"0:v:0",
|
| 46 |
+
"-map",
|
| 47 |
+
"1:a:0",
|
| 48 |
+
"-shortest",
|
| 49 |
+
"-strict",
|
| 50 |
+
"experimental",
|
| 51 |
+
output_path,
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
try:
|
| 55 |
+
sp.run(command, check=True, stdout=sp.DEVNULL, stderr=sp.DEVNULL, stdin=sp.DEVNULL)
|
| 56 |
+
print(f"Successfully merged audio and video into {output_path}")
|
| 57 |
+
return output_path
|
| 58 |
+
except sp.CalledProcessError as e:
|
| 59 |
+
print(f"Error merging audio and video: {e}")
|
| 60 |
+
return None
|
| 61 |
|
| 62 |
|
| 63 |
def get_spk_emb(audio_path, ort_session):
|