DeepDubber-V1 / src /moviedubber /infer /video_preprocess.py
Opus
init
9d9ac6c
import argparse
import glob
import logging
import os
import os.path as osp
from pathlib import Path
from typing import Optional, Union
import cv2
import imageio
import numpy as np
import torch
import torch.multiprocessing as mp
from decord import AudioReader, VideoReader, cpu
from PIL import Image
from tqdm import tqdm
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
logging.basicConfig(level=logging.ERROR, format="%(asctime)s - %(levelname)s - %(message)s")
NUM_FRAMES = None # NUM_FRAMES = 160
MAX_FRAMES = None # MAX_FRAMES = 256
NUM_FRAMES_PER_SECOND = 10
def get_full_indices(reader: Union[VideoReader, AudioReader]) -> np.ndarray:
if isinstance(reader, VideoReader):
return np.linspace(0, len(reader) - 1, len(reader), dtype=int)
elif isinstance(reader, AudioReader):
return np.linspace(0, reader.shape[-1] - 1, reader.shape[-1], dtype=int)
def create_output_directories(output_dir):
try:
os.makedirs(osp.join(output_dir, "audio"), exist_ok=True)
os.makedirs(osp.join(output_dir, "video"), exist_ok=True)
except OSError as e:
print(f"Error creating directories: {e}")
raise
def frame_sample(duration, mode="uniform", num_frames=None, fps=None):
if mode == "uniform":
assert num_frames is not None, "Number of frames must be provided for uniform sampling."
# NOTE: v1 version
# Calculate the size of each segment from which a frame will be extracted
seg_size = float(duration - 1) / num_frames
frame_ids = []
for i in range(num_frames):
# Calculate the start and end indices of each segment
start = seg_size * i
end = seg_size * (i + 1)
# Append the middle index of the segment to the list
frame_ids.append((start + end) / 2)
return np.round(np.array(frame_ids) + 1e-6).astype(int)
# NOTE: v0 version
# return np.linspace(0, duration-1, num_frames, dtype=int)
elif mode == "fps":
assert fps is not None, "FPS must be provided for FPS sampling."
segment_len = min(fps // NUM_FRAMES_PER_SECOND, duration)
return np.arange(segment_len // 2, duration, segment_len, dtype=int)
else:
raise ImportError(f"Unsupported frame sampling mode: {mode}")
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def process_video(video_path, processor, s=None, e=None, aspect_ratio="pad", num_frames=NUM_FRAMES):
if isinstance(video_path, str):
if s is not None and e is not None:
s = s if s >= 0.0 else 0.0
e = e if e >= 0.0 else 0.0
if s > e:
s, e = e, s
elif s == e:
e = s + 1
# 1. Loading Video
if os.path.isdir(video_path):
frame_files = sorted(os.listdir(video_path))
fps = 3
num_frames_of_video = len(frame_files)
elif video_path.endswith(".gif"):
gif_reader = imageio.get_reader(video_path)
fps = 25
num_frames_of_video = len(gif_reader)
else:
try:
vreader = VideoReader(video_path, ctx=cpu(0), num_threads=1)
except: # noqa: E722
return None
fps = vreader.get_avg_fps()
num_frames_of_video = len(vreader)
# 2. Determine frame range & Calculate frame indices
f_start = 0 if s is None else max(int(s * fps) - 1, 0)
f_end = num_frames_of_video - 1 if e is None else min(int(e * fps) - 1, num_frames_of_video - 1)
frame_indices = list(range(f_start, f_end + 1))
duration = len(frame_indices)
# 3. Sampling frame indices
if num_frames is None:
sampled_frame_indices = [frame_indices[i] for i in frame_sample(duration, mode="fps", fps=fps)]
else:
sampled_frame_indices = [
frame_indices[i] for i in frame_sample(duration, mode="uniform", num_frames=num_frames)
]
# 4. Acquire frame data
if os.path.isdir(video_path):
video_data = [Image.open(os.path.join(video_path, frame_files[f_idx])) for f_idx in sampled_frame_indices]
elif video_path.endswith(".gif"):
video_data = [
Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB))
for idx, frame in enumerate(gif_reader)
if idx in sampled_frame_indices
]
else:
video_data = [Image.fromarray(frame) for frame in vreader.get_batch(sampled_frame_indices).asnumpy()]
elif isinstance(video_path, np.ndarray):
video_data = [Image.fromarray(f) for f in video_path]
elif isinstance(video_path, list) and isinstance(video_path[0], np.ndarray):
video_data = [Image.fromarray(f) for f in video_path]
elif isinstance(video_path, list) and isinstance(video_path[0], str):
video_data = [Image.open(f) for f in video_path]
elif isinstance(video_path, list) and isinstance(video_path[0], Image.Image):
video_data = video_path
else:
raise ValueError(f"Unsupported video path type: {type(video_path)}")
while num_frames is not None and len(video_data) < num_frames:
video_data.append(Image.fromarray(np.zeros((*video_data[-1].size, 3), dtype=np.uint8)))
# MAX_FRAMES filter
if MAX_FRAMES:
video_data = video_data[:MAX_FRAMES]
if aspect_ratio == "pad":
images = [expand2square(f, tuple(int(x * 255) for x in processor.image_mean)) for f in video_data]
else:
images = list(video_data)
video = processor.preprocess(images, return_tensors="pt")["pixel_values"]
return video
class VideoFeatureExtractor:
def __init__(
self,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = "openai/clip-vit-large-patch14",
device: str = "cuda",
):
self.device = device
self.processor = CLIPImageProcessor.from_pretrained(pretrained_model_name_or_path)
self.model = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_name_or_path).to(self.device).half()
def extract_features(self, video_path):
images = process_video(video_path, self.processor)
if images is None:
return None
clip_feature = self.model(images.to(self.device).half()).image_embeds
return clip_feature
def video_processor(item, feature_extractor, output_dir=None):
video_path = Path(item)
if not os.path.exists(video_path):
return
clip_feature = feature_extractor.extract_features(str(video_path))
if clip_feature is None:
return
if output_dir is not None and not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
output_path = osp.join(output_dir, f"{video_path.stem}.pt")
else:
output_path = video_path.with_suffix(".clip")
torch.save(clip_feature, output_path)
def s_thread(items, id, device, output_dir):
feature_extractor = VideoFeatureExtractor(device=device)
for i, data in tqdm(enumerate(items), total=len(items), position=id):
video_processor(data, feature_extractor, output_dir)
def load_tensor(file_path, map_location="cpu", weights_only=True):
try:
return torch.load(file_path, map_location=map_location, weights_only=weights_only)
except FileNotFoundError:
logging.error(f"File not found: {file_path}")
except torch.serialization.pickle.UnpicklingError:
logging.error(f"Failed to unpickle file: {file_path}")
except Exception as e:
logging.error(f"An error occurred while loading {file_path}: {e}")
return None
def post_check(directory):
if not osp.isdir(directory):
logging.error(f"Invalid directory: {directory}")
return
video_dir = osp.join(directory, "video")
pt_files = glob.glob(f"{video_dir}/*.pt")
for file_path in tqdm(pt_files):
embeds = load_tensor(file_path)
if embeds is None:
continue
audio_file_path = file_path.replace("video", "audio")
audio_text_embeds = load_tensor(audio_file_path)
if audio_text_embeds is None:
logging.error(f"Failed to load audio file: {audio_file_path}")
continue
text = audio_text_embeds.get("text")
mel = audio_text_embeds.get("mel")
if text is None or mel is None:
logging.error(f"Missing 'text' or 'mel' in {audio_file_path}")
def args_parse():
args = argparse.ArgumentParser()
args.add_argument("--data_type", "-d", type=str, default="video", help="'audio' or 'video'")
args.add_argument("--check", action="store_true", help="post check, if any pt file was damaged")
args.add_argument(
"--num_threads",
"-n",
type=int,
default=1,
required=False,
help="num_threads",
)
args.add_argument(
"--input",
"-i",
type=str,
required=True,
help="input file path",
)
args.add_argument(
"--output_dir",
"-o",
type=str,
default=None,
help="output folder path",
)
args.add_argument("--multi_gpu", "-m", nargs="+", type=str, default=None, required=False, help="GPU ids")
args = args.parse_args()
return args
if __name__ == "__main__":
args_main = args_parse()
if args_main.check:
post_check(args_main.output_dir)
exit(0)
gpu_ids = ["cuda:0"]
if args_main.multi_gpu is not None:
gpu_ids = [f"cuda:{gpu}" for gpu in args_main.multi_gpu]
output_dir = args_main.output_dir
if output_dir is not None:
create_output_directories(output_dir)
rows = None
rows = [it.strip() for it in Path(args_main.input).read_text().split("\n") if it.strip() != ""]
chunks = np.array_split(rows, args_main.num_threads)
chunks = [chunk.tolist() for chunk in chunks]
processes = []
mp.set_start_method("spawn", force=True)
for idx, chunk in enumerate(chunks):
device = gpu_ids[idx % len(gpu_ids)]
p = mp.Process(target=s_thread, args=(chunk, idx, device, output_dir))
processes.append(p)
p.start()
for process in processes:
process.join()
# DEBUG
# s_thread(args_main, input_dir, output_dir, chunks[0], 0, "cuda:0")
print("process done!")