File size: 6,461 Bytes
9d9ac6c
3f053af
9d9ac6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f053af
 
 
9d9ac6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ac125
9d9ac6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8551eaf
 
 
9d9ac6c
 
 
 
 
 
 
 
 
 
 
 
8551eaf
9d9ac6c
 
 
8551eaf
 
 
 
9d9ac6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import sys
import tempfile

import gradio as gr
import librosa
import soundfile
import torch
import torch.nn.functional as F
import torchaudio
from moviepy import VideoFileClip
from pydub import AudioSegment
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline

from src.moviedubber.infer.utils_infer import (
    cfg_strength,
    chunk_text,
    nfe_step,
    sway_sampling_coef,
)
from src.moviedubber.infer.video_preprocess import VideoFeatureExtractor
from src.moviedubber.infer_with_mmlm_result import concat_movie_with_audio, get_spk_emb, load_models
from src.moviedubber.model.utils import convert_char_to_pinyin


sys.path.append("src/third_party/BigVGAN")


def load_asr_model(model_id="openai/whisper-large-v3-turbo"):
    torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
    ).to(device)

    processor = AutoProcessor.from_pretrained(model_id)

    pipe = pipeline(
        "automatic-speech-recognition",
        model=model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        torch_dtype=torch_dtype,
        device=device,
    )
    return pipe


device = "cpu"

ema_model, vocoder, ort_session = load_models(device=device)
asr_pipe = load_asr_model()

videofeature_extractor = VideoFeatureExtractor(device=device)


def deepdubber(video_path: str, subtitle_text: str, audio_path: str = None) -> str:
    print(f"Starting deepdubber with video_path: {video_path} and subtitle_text: {subtitle_text}")
    gen_clip = videofeature_extractor.extract_features(video_path)
    gen_text = subtitle_text

    clip = VideoFileClip(video_path)
    gen_audio_len = int(clip.duration * 24000 // 256)

    gen_clip = gen_clip.unsqueeze(0).to(device=device, dtype=torch.float32).transpose(1, 2)
    gen_clip = F.interpolate(gen_clip, size=(gen_audio_len,), mode="linear", align_corners=False).transpose(1, 2)

    ref_audio_len = None
    if audio_path is not None:
        print("reference audio is not None, dubbing with reference audio")

        if audio_path.endswith(".mp3"):
            audio = AudioSegment.from_mp3(audio_path)

            wav_file = audio_path.replace(".mp3", ".wav")
            audio.export(wav_file, format="wav")
        else:
            wav_file = audio_path

        ref_text = asr_pipe(librosa.load(wav_file, sr=16000)[0], generate_kwargs={"language": "english"})["text"]
        ref_text = ref_text.replace("\n", " ").replace("\r", " ")
        print(f"Reference text: {ref_text}")

        spk_emb = get_spk_emb(wav_file, ort_session)
        spk_emb = torch.tensor(spk_emb).to(device=device, dtype=torch.float32).unsqueeze(0).unsqueeze(0)

        audio_data, sr = torchaudio.load(wav_file)
        resampler = torchaudio.transforms.Resample(sr, 24000)
        if sr != 24000:
            audio_data = resampler(audio_data)

        if audio_data.shape[0] > 1:
            audio_data = torch.mean(audio_data, dim=0, keepdim=True)

        audio_data = audio_data.to(device)

        ref_audio_len = int(audio_data.shape[-1] // 256)
        ref_clip = torch.zeros((1, ref_audio_len, 768)).to(device=device)

        gen_clip = torch.cat((gen_clip, ref_clip), dim=1)

        gen_audio_len = ref_audio_len + gen_audio_len

        gen_text = ref_text + " " + gen_text

    else:
        spk_emb = torch.zeros((1, 1, 192)).to(device=device)
        audio_data = torch.zeros((1, gen_audio_len, 100)).to(device=device)

    gen_text_batches = chunk_text(gen_text, max_chars=1024)
    final_text_list = convert_char_to_pinyin(gen_text_batches)

    with torch.inference_mode():
        generated, _ = ema_model.sample(
            cond=audio_data,
            text=final_text_list,
            clip=gen_clip,
            spk_emb=spk_emb,
            duration=gen_audio_len,
            steps=nfe_step,
            cfg_strength=cfg_strength,
            sway_sampling_coef=sway_sampling_coef,
            no_ref_audio=False,
        )

        generated = generated.to(torch.float32)

        if ref_audio_len is not None:
            generated = generated[:, ref_audio_len:, :]

        generated_mel_spec = generated.permute(0, 2, 1)
        generated_wave = vocoder(generated_mel_spec)

        generated_wave = generated_wave.squeeze().cpu().numpy()

    # using a temporary wav file to save the generated audio
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
        temp_wav_path = temp_wav_file.name
        soundfile.write(temp_wav_path, generated_wave, samplerate=24000)

    concated_video = concat_movie_with_audio(temp_wav_path, video_path, ".")

    # Ensure the temporary file is deleted after use
    os.remove(temp_wav_path)

    print(f"Deepdubber completed successfully, output path: {concated_video}")
    return concated_video


def process_video_dubbing(video_path: str, subtitle_text: str, audio_path: str = None) -> str:
    try:
        print(f"Processing video: {video_path}")
        if not os.path.exists(video_path):
            raise ValueError("Video file does not exist")

        if not subtitle_text.strip():
            raise ValueError("Subtitle text cannot be empty")

        if audio_path is None:
            audio_path = "datasets/CoTMovieDubbing/GT.wav"

        output_path = deepdubber(video_path, subtitle_text, audio_path)

        return output_path

    except Exception as e:
        print(f"Error in process_video_dubbing: {e}")

        return None


def create_ui():
    with gr.Blocks(title="DeepDubber-V1") as app:
        gr.Markdown("# DeepDubber-V1\nUpload your video file and enter the subtitle you want to dub")

        with gr.Row():
            video_input = gr.Video(label="Upload video")
            audio_input = gr.Audio(label="Upload speech prompt (Optional)", type="filepath")
            subtitle_input = gr.Textbox(
                label="Enter the subtitle", placeholder="Enter the subtitle to be dubbed...", lines=5
            )

        process_btn = gr.Button("Start Dubbing")

        output_video = gr.Video(label="Dubbed Video")

        process_btn.click(
            fn=process_video_dubbing, inputs=[video_input, subtitle_input, audio_input], outputs=output_video
        )

    return app


if __name__ == "__main__":
    app = create_ui()
    app.launch()