Spaces:
Sleeping
Sleeping
wjm55
commited on
Commit
·
052c825
1
Parent(s):
d5d8604
Add YOLOv11 model integration and Gradio interface for text detection
Browse files- app.py +158 -95
- requirements.txt +2 -0
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
import warnings
|
| 3 |
warnings.simplefilter("ignore", UserWarning)
|
| 4 |
|
|
@@ -18,13 +17,39 @@ import cv2
|
|
| 18 |
import numpy as np
|
| 19 |
import pandas as pd
|
| 20 |
import logging
|
| 21 |
-
from typing import List, Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Configure logging
|
| 24 |
logging.getLogger("lightning.pytorch").setLevel(logging.ERROR)
|
| 25 |
|
| 26 |
# Load YOLOv8 model
|
| 27 |
-
model = YOLO(
|
| 28 |
images = Path(mkdtemp())
|
| 29 |
DEFAULT_HEIGHT = 128
|
| 30 |
TEXT_DIRECTION = "LTR"
|
|
@@ -36,6 +61,13 @@ CONFIDENCE_PATTERN = r"(?P<confidence>[0-9.]+)" # For line
|
|
| 36 |
TEXT_PATTERN = r"\s*(?P<text>.*)\s*"
|
| 37 |
LINE_PREDICTION = re.compile(rf"{IMAGE_ID_PATTERN} {CONFIDENCE_PATTERN} {TEXT_PATTERN}")
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def get_width(image, height=DEFAULT_HEIGHT):
|
| 40 |
aspect_ratio = image.width / image.height
|
| 41 |
return height * aspect_ratio
|
|
@@ -65,7 +97,8 @@ def simplify_polygons(polygons: List[np.ndarray], approx_level: float = 0.01) ->
|
|
| 65 |
result.append(approx.squeeze())
|
| 66 |
return result
|
| 67 |
|
| 68 |
-
def
|
|
|
|
| 69 |
model_dir = 'catmus-medieval'
|
| 70 |
temperature = 2.0
|
| 71 |
batch_size = 1
|
|
@@ -121,96 +154,126 @@ def predict(model_name, input_img):
|
|
| 121 |
predictions = Path(pred_stdout.name).read_text().strip().splitlines()
|
| 122 |
|
| 123 |
_, score, text = LINE_PREDICTION.match(predictions[0]).groups()
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
segmented_image, table_data = process_image(image)
|
| 191 |
-
return segmented_image, table_data
|
| 192 |
-
|
| 193 |
-
# Streamlit app layout
|
| 194 |
-
st.set_page_config(layout="wide") # Use full page width
|
| 195 |
-
st.title("YOLOv11 Text Line Segmentation & PyLaia Text Recognition on CATMuS/medieval")
|
| 196 |
-
|
| 197 |
-
# File uploader
|
| 198 |
-
uploaded_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
| 199 |
-
|
| 200 |
-
# Process the image if uploaded
|
| 201 |
-
if uploaded_image is not None:
|
| 202 |
-
image = Image.open(uploaded_image)
|
| 203 |
-
|
| 204 |
-
if st.button("Segment and Recognize"):
|
| 205 |
-
# Perform segmentation and recognition
|
| 206 |
-
segmented_image, table_data = segment_and_recognize(image)
|
| 207 |
-
|
| 208 |
-
# Layout: Image on the left, Table on the right
|
| 209 |
-
col1, col2 = st.columns([2, 3]) # Adjust the ratio if needed
|
| 210 |
-
|
| 211 |
-
with col1:
|
| 212 |
-
st.image(segmented_image, caption="Segmented Image with Polygon Masks", use_container_width=True)
|
| 213 |
|
| 214 |
-
with
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
|
|
|
|
|
|
| 1 |
import warnings
|
| 2 |
warnings.simplefilter("ignore", UserWarning)
|
| 3 |
|
|
|
|
| 17 |
import numpy as np
|
| 18 |
import pandas as pd
|
| 19 |
import logging
|
| 20 |
+
from typing import List, Optional, Tuple, Dict
|
| 21 |
+
from huggingface_hub import hf_hub_download
|
| 22 |
+
import gradio as gr
|
| 23 |
+
import supervision as sv
|
| 24 |
+
import os
|
| 25 |
+
import spaces
|
| 26 |
+
import torch
|
| 27 |
+
|
| 28 |
+
# Define models
|
| 29 |
+
MODEL_OPTIONS = {
|
| 30 |
+
"YOLOv11-Nano": "medieval-yolov11n.pt",
|
| 31 |
+
"YOLOv11-Small": "medieval-yolov11s.pt",
|
| 32 |
+
"YOLOv11-Medium": "medieval-yolov11m.pt",
|
| 33 |
+
"YOLOv11-Large": "medieval-yolov11l.pt",
|
| 34 |
+
"YOLOv11-XLarge": "medieval-yolov11x.pt"
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
# Dictionary to store loaded models
|
| 38 |
+
models: Dict[str, YOLO] = {}
|
| 39 |
+
|
| 40 |
+
# Load all models
|
| 41 |
+
for name, model_file in MODEL_OPTIONS.items():
|
| 42 |
+
model_path = hf_hub_download(
|
| 43 |
+
repo_id="biglam/medieval-manuscript-yolov11",
|
| 44 |
+
filename=model_file
|
| 45 |
+
)
|
| 46 |
+
models[name] = YOLO(model_path)
|
| 47 |
|
| 48 |
# Configure logging
|
| 49 |
logging.getLogger("lightning.pytorch").setLevel(logging.ERROR)
|
| 50 |
|
| 51 |
# Load YOLOv8 model
|
| 52 |
+
model = YOLO(model_path)
|
| 53 |
images = Path(mkdtemp())
|
| 54 |
DEFAULT_HEIGHT = 128
|
| 55 |
TEXT_DIRECTION = "LTR"
|
|
|
|
| 61 |
TEXT_PATTERN = r"\s*(?P<text>.*)\s*"
|
| 62 |
LINE_PREDICTION = re.compile(rf"{IMAGE_ID_PATTERN} {CONFIDENCE_PATTERN} {TEXT_PATTERN}")
|
| 63 |
|
| 64 |
+
# Create annotators
|
| 65 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK)
|
| 66 |
+
BOX_ANNOTATOR = sv.BoxAnnotator()
|
| 67 |
+
|
| 68 |
+
# Select device
|
| 69 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 70 |
+
|
| 71 |
def get_width(image, height=DEFAULT_HEIGHT):
|
| 72 |
aspect_ratio = image.width / image.height
|
| 73 |
return height * aspect_ratio
|
|
|
|
| 97 |
result.append(approx.squeeze())
|
| 98 |
return result
|
| 99 |
|
| 100 |
+
def predict_text(input_img):
|
| 101 |
+
"""PyLaia text recognition function"""
|
| 102 |
model_dir = 'catmus-medieval'
|
| 103 |
temperature = 2.0
|
| 104 |
batch_size = 1
|
|
|
|
| 154 |
predictions = Path(pred_stdout.name).read_text().strip().splitlines()
|
| 155 |
|
| 156 |
_, score, text = LINE_PREDICTION.match(predictions[0]).groups()
|
| 157 |
+
return text, float(score)
|
| 158 |
+
|
| 159 |
+
@spaces.GPU
|
| 160 |
+
def detect_and_recognize(image, model_name, conf_threshold, iou_threshold):
|
| 161 |
+
if image is None:
|
| 162 |
+
return None, ""
|
| 163 |
+
|
| 164 |
+
# Get model path
|
| 165 |
+
model_path = hf_hub_download(
|
| 166 |
+
repo_id="biglam/medieval-manuscript-yolov11",
|
| 167 |
+
filename=MODEL_OPTIONS[model_name]
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# Load model
|
| 171 |
+
model = YOLO(model_path)
|
| 172 |
+
|
| 173 |
+
# Perform inference
|
| 174 |
+
results = model.predict(
|
| 175 |
+
image,
|
| 176 |
+
conf=conf_threshold,
|
| 177 |
+
iou=iou_threshold,
|
| 178 |
+
classes=0,
|
| 179 |
+
device=device
|
| 180 |
+
)[0]
|
| 181 |
+
|
| 182 |
+
# Convert results to supervision Detections
|
| 183 |
+
boxes = results.boxes.xyxy.cpu().numpy()
|
| 184 |
+
confidence = results.boxes.conf.cpu().numpy()
|
| 185 |
+
class_ids = results.boxes.cls.cpu().numpy().astype(int)
|
| 186 |
+
|
| 187 |
+
# Sort boxes by y-coordinate
|
| 188 |
+
sorted_indices = np.argsort(boxes[:, 1])
|
| 189 |
+
boxes = boxes[sorted_indices]
|
| 190 |
+
confidence = confidence[sorted_indices]
|
| 191 |
+
|
| 192 |
+
# Create Detections object
|
| 193 |
+
detections = sv.Detections(
|
| 194 |
+
xyxy=boxes,
|
| 195 |
+
confidence=confidence,
|
| 196 |
+
class_id=class_ids
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
# Create labels
|
| 200 |
+
labels = [
|
| 201 |
+
f"Line {i+1} ({conf:.2f})"
|
| 202 |
+
for i, conf in enumerate(confidence)
|
| 203 |
+
]
|
| 204 |
+
|
| 205 |
+
# Annotate image
|
| 206 |
+
annotated_image = image.copy()
|
| 207 |
+
annotated_image = BOX_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
|
| 208 |
+
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels)
|
| 209 |
+
|
| 210 |
+
# Create text summary
|
| 211 |
+
text_summary = "\n".join([f"Line {i+1}: Confidence {conf:.2f}" for i, conf in enumerate(confidence)])
|
| 212 |
+
|
| 213 |
+
return annotated_image, text_summary
|
| 214 |
+
|
| 215 |
+
def gradio_reset():
|
| 216 |
+
return None, None, ""
|
| 217 |
+
|
| 218 |
+
if __name__ == "__main__":
|
| 219 |
+
print(f"Using device: {device}")
|
| 220 |
+
|
| 221 |
+
with gr.Blocks() as demo:
|
| 222 |
+
gr.Markdown("# Medieval Manuscript Text Detection")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
+
with gr.Row():
|
| 225 |
+
with gr.Column():
|
| 226 |
+
input_image = gr.Image(
|
| 227 |
+
label="Input Image",
|
| 228 |
+
type="numpy"
|
| 229 |
+
)
|
| 230 |
+
with gr.Accordion("Detection Settings", open=True):
|
| 231 |
+
model_selector = gr.Dropdown(
|
| 232 |
+
choices=list(MODEL_OPTIONS.keys()),
|
| 233 |
+
value=list(MODEL_OPTIONS.keys())[0],
|
| 234 |
+
label="Model",
|
| 235 |
+
info="Select YOLO model variant"
|
| 236 |
+
)
|
| 237 |
+
with gr.Row():
|
| 238 |
+
conf_threshold = gr.Slider(
|
| 239 |
+
label="Confidence Threshold",
|
| 240 |
+
minimum=0.0,
|
| 241 |
+
maximum=1.0,
|
| 242 |
+
step=0.05,
|
| 243 |
+
value=0.25,
|
| 244 |
+
)
|
| 245 |
+
iou_threshold = gr.Slider(
|
| 246 |
+
label="IoU Threshold",
|
| 247 |
+
minimum=0.0,
|
| 248 |
+
maximum=1.0,
|
| 249 |
+
step=0.05,
|
| 250 |
+
value=0.45,
|
| 251 |
+
)
|
| 252 |
+
with gr.Row():
|
| 253 |
+
clear_btn = gr.Button("Clear")
|
| 254 |
+
detect_btn = gr.Button("Detect", variant="primary")
|
| 255 |
+
|
| 256 |
+
with gr.Column():
|
| 257 |
+
output_image = gr.Image(
|
| 258 |
+
label="Detection Result",
|
| 259 |
+
type="numpy"
|
| 260 |
+
)
|
| 261 |
+
text_output = gr.Textbox(
|
| 262 |
+
label="Detection Summary",
|
| 263 |
+
lines=10
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
# Connect buttons to functions
|
| 267 |
+
detect_btn.click(
|
| 268 |
+
detect_and_recognize,
|
| 269 |
+
inputs=[input_image, model_selector, conf_threshold, iou_threshold],
|
| 270 |
+
outputs=[output_image, text_output]
|
| 271 |
+
)
|
| 272 |
+
clear_btn.click(
|
| 273 |
+
gradio_reset,
|
| 274 |
+
inputs=None,
|
| 275 |
+
outputs=[input_image, output_image, text_output]
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
| 279 |
|
requirements.txt
CHANGED
|
@@ -20,3 +20,5 @@ python-bidi==0.6.0
|
|
| 20 |
streamlit==1.44.0
|
| 21 |
transformers==4.50.3
|
| 22 |
ultralytics==8.3.99
|
|
|
|
|
|
|
|
|
| 20 |
streamlit==1.44.0
|
| 21 |
transformers==4.50.3
|
| 22 |
ultralytics==8.3.99
|
| 23 |
+
gradio
|
| 24 |
+
supervision
|