File size: 8,900 Bytes
7860b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import warnings
warnings.simplefilter("ignore", UserWarning)

from uuid import uuid4
from laia.scripts.htr.decode_ctc import run as decode
from laia.common.arguments import CommonArgs, DataArgs, TrainerArgs, DecodeArgs
import sys
from tempfile import NamedTemporaryFile, mkdtemp
from pathlib import Path
from contextlib import redirect_stdout
import re
from PIL import Image
from bidi.algorithm import get_display
import multiprocessing
from ultralytics import YOLO
import cv2
import numpy as np
import pandas as pd
import logging
from typing import List, Optional, Tuple, Dict
from huggingface_hub import hf_hub_download
import gradio as gr
import supervision as sv
import os
import spaces
import torch

# Define models
MODEL_OPTIONS = {
    "YOLOv11-Nano": "medieval-yolov11n.pt",
    "YOLOv11-Small": "medieval-yolov11s.pt",
    "YOLOv11-Medium": "medieval-yolov11m.pt",
    "YOLOv11-Large": "medieval-yolov11l.pt",
    "YOLOv11-XLarge": "medieval-yolov11x.pt"
}

# Dictionary to store loaded models
models: Dict[str, YOLO] = {}

# Load all models
for name, model_file in MODEL_OPTIONS.items():
    model_path = hf_hub_download(
        repo_id="biglam/medieval-manuscript-yolov11",
        filename=model_file
    )
    models[name] = YOLO(model_path)

# Configure logging
logging.getLogger("lightning.pytorch").setLevel(logging.ERROR)

# Load YOLOv8 model
model = YOLO(model_path)
images = Path(mkdtemp())
DEFAULT_HEIGHT = 128
TEXT_DIRECTION = "LTR"
NUM_WORKERS = multiprocessing.cpu_count()

# Regex pattern for extracting results
IMAGE_ID_PATTERN = r"(?P<image_id>[-a-z0-9]{36})"
CONFIDENCE_PATTERN = r"(?P<confidence>[0-9.]+)"  # For line
TEXT_PATTERN = r"\s*(?P<text>.*)\s*"
LINE_PREDICTION = re.compile(rf"{IMAGE_ID_PATTERN} {CONFIDENCE_PATTERN} {TEXT_PATTERN}")

# Create annotators
LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK)
BOX_ANNOTATOR = sv.BoxAnnotator()

# Select device
device = 'cuda' if torch.cuda.is_available() else 'cpu'

def get_width(image, height=DEFAULT_HEIGHT):
    aspect_ratio = image.width / image.height
    return height * aspect_ratio

def simplify_polygons(polygons: List[np.ndarray], approx_level: float = 0.01) -> List[Optional[np.ndarray]]:
    """Simplify polygon contours using Douglas-Peucker algorithm.
    
    Args:
        polygons: List of polygon contours
        approx_level: Approximation level (0-1), lower values mean more simplification
        
    Returns:
        List of simplified polygons (or None for invalid polygons)
    """
    result = []
    for polygon in polygons:
        if len(polygon) < 4:
            result.append(None)
            continue

        perimeter = cv2.arcLength(polygon, True)
        approx = cv2.approxPolyDP(polygon, approx_level * perimeter, True)
        if len(approx) < 4:
            result.append(None)
            continue

        result.append(approx.squeeze())
    return result

def predict_text(input_img):
    """PyLaia text recognition function"""
    model_dir = 'catmus-medieval'
    temperature = 2.0
    batch_size = 1

    weights_path = f"{model_dir}/weights.ckpt"
    syms_path = f"{model_dir}/syms.txt"
    language_model_params = {"language_model_weight": 1.0}
    use_language_model = True
    if use_language_model:
        language_model_params.update({
            "language_model_path": f"{model_dir}/language_model.binary",
            "lexicon_path": f"{model_dir}/lexicon.txt",
            "tokens_path": f"{model_dir}/tokens.txt",
        })

    common_args = CommonArgs(
        checkpoint="weights.ckpt",
        train_path=f"{model_dir}",
        experiment_dirname="",
    )

    data_args = DataArgs(batch_size=batch_size, color_mode="L")
    trainer_args = TrainerArgs(progress_bar_refresh_rate=0)
    decode_args = DecodeArgs(
        include_img_ids=True,
        join_string="",
        convert_spaces=True,
        print_line_confidence_scores=True,
        print_word_confidence_scores=False,
        temperature=temperature,
        use_language_model=use_language_model,
        **language_model_params,
    )

    with NamedTemporaryFile() as pred_stdout, NamedTemporaryFile() as img_list:
        image_id = uuid4()
        input_img = input_img.resize((int(get_width(input_img)), DEFAULT_HEIGHT))
        input_img.save(f"{images}/{image_id}.jpg")
        Path(img_list.name).write_text("\n".join([str(image_id)]))

        with redirect_stdout(open(pred_stdout.name, mode="w")):
            decode(
                syms=str(syms_path),
                img_list=img_list.name,
                img_dirs=[str(images)],
                common=common_args,
                data=data_args,
                trainer=trainer_args,
                decode=decode_args,
                num_workers=1,
            )
            sys.stdout.flush()
        predictions = Path(pred_stdout.name).read_text().strip().splitlines()

    _, score, text = LINE_PREDICTION.match(predictions[0]).groups()
    return text, float(score)

@spaces.GPU
def detect_and_recognize(image, model_name, conf_threshold, iou_threshold):
    if image is None:
        return None, ""
    
    # Get model path
    model_path = hf_hub_download(
        repo_id="biglam/medieval-manuscript-yolov11",
        filename=MODEL_OPTIONS[model_name]
    )
    
    # Load model
    model = YOLO(model_path)
    
    # Perform inference
    results = model.predict(
        image,
        conf=conf_threshold,
        iou=iou_threshold,
        classes=0,
        device=device
    )[0]
    
    # Convert results to supervision Detections
    boxes = results.boxes.xyxy.cpu().numpy()
    confidence = results.boxes.conf.cpu().numpy()
    class_ids = results.boxes.cls.cpu().numpy().astype(int)
    
    # Sort boxes by y-coordinate
    sorted_indices = np.argsort(boxes[:, 1])
    boxes = boxes[sorted_indices]
    confidence = confidence[sorted_indices]
    
    # Create Detections object
    detections = sv.Detections(
        xyxy=boxes,
        confidence=confidence,
        class_id=class_ids
    )
    
    # Create labels
    labels = [
        f"Line {i+1} ({conf:.2f})"
        for i, conf in enumerate(confidence)
    ]

    # Annotate image
    annotated_image = image.copy()
    annotated_image = BOX_ANNOTATOR.annotate(scene=annotated_image, detections=detections)
    annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels)
    
    # Create text summary
    text_summary = "\n".join([f"Line {i+1}: Confidence {conf:.2f}" for i, conf in enumerate(confidence)])
    
    return annotated_image, text_summary

def gradio_reset():
    return None, None, ""

if __name__ == "__main__":
    print(f"Using device: {device}")
    
    with gr.Blocks() as demo:
        gr.Markdown("# Medieval Manuscript Text Detection")
        
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    label="Input Image",
                    type="numpy"
                )
                with gr.Accordion("Detection Settings", open=True):
                    model_selector = gr.Dropdown(
                        choices=list(MODEL_OPTIONS.keys()),
                        value=list(MODEL_OPTIONS.keys())[0],
                        label="Model",
                        info="Select YOLO model variant"
                    )
                    with gr.Row():
                        conf_threshold = gr.Slider(
                            label="Confidence Threshold",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.05,
                            value=0.25,
                        )
                        iou_threshold = gr.Slider(
                            label="IoU Threshold",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.05,
                            value=0.45,
                        )
                with gr.Row():
                    clear_btn = gr.Button("Clear")
                    detect_btn = gr.Button("Detect", variant="primary")
                    
            with gr.Column():
                output_image = gr.Image(
                    label="Detection Result",
                    type="numpy"
                )
                text_output = gr.Textbox(
                    label="Detection Summary",
                    lines=10
                )

        # Connect buttons to functions
        detect_btn.click(
            detect_and_recognize,
            inputs=[input_image, model_selector, conf_threshold, iou_threshold],
            outputs=[output_image, text_output]
        )
        clear_btn.click(
            gradio_reset,
            inputs=None,
            outputs=[input_image, output_image, text_output]
        )

    demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)