Spaces:
Runtime error
Runtime error
File size: 7,753 Bytes
b22b80e 9c2430d b22b80e e4f4963 9c2430d b22b80e a2139ac b6ec892 3e4f76c a2139ac b22b80e 9c2430d a2139ac 3e4f76c 95ab993 a2139ac 7819338 a2139ac e4f4963 9c2430d b22b80e 9c2430d e4f4963 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d 8acf762 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e 9c2430d b22b80e e4f4963 b22b80e 9c2430d a2139ac 9c2430d b22b80e 9c2430d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import numpy as np
import random
from PIL import Image
import spaces
from http import HTTPStatus
from urllib.parse import urlparse, unquote
from pathlib import PurePosixPath
import requests
import os
from diffusers import DiffusionPipeline
import torch
model_name = "Qwen/Qwen-Image"
pipe = DiffusionPipeline.from_pretrained(model_name, torch_dtype=torch.bfloat16)
pipe.to('cuda')
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1440
# (1664, 928), (1472, 1140), (1328, 1328)
def get_image_size(aspect_ratio):
if aspect_ratio == "1:1":
return 1328, 1328
elif aspect_ratio == "16:9":
return 1664, 928
elif aspect_ratio == "9:16":
return 928, 1664
elif aspect_ratio == "4:3":
return 1472, 1140
elif aspect_ratio == "3:4":
return 1140, 1472
else:
return 1328, 1328
@spaces.GPU(duration=60)
def infer_diffusers(
prompt,
negative_prompt=" ",
seed=42,
randomize_seed=False,
aspect_ratio="16:9",
guidance_scale=4,
num_inference_steps=50,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
width, height = get_image_size(aspect_ratio)
print("Generating for prompt:", prompt)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
num_inference_steps=50,
true_cfg_scale=4.0,
generator=torch.Generator(device="cuda").manual_seed(42)
).images[0]
#image.save("example.png")
return image, seed
@spaces.GPU(duration=65)
def infer(
prompt,
negative_prompt=" ",
seed=42,
randomize_seed=False,
aspect_ratio="16:9",
guidance_scale=4,
num_inference_steps=50,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
width, height = get_image_size(aspect_ratio)
print("calling with prompt: %s" % prompt)
rsp = ImageSynthesis.call(api_key=os.environ.get("DASH_API_KEY"),
model="qwen-image",
prompt=prompt,
negative_prompt=negative_prompt,
n=1,
seed=seed,
guidance_scale=guidance_scale,
steps=num_inference_steps,
size=f'{width}*{height}'
) # support 1664*928, 1472*1140, 1328*1328, 1140*1472, 928*1664
print('response: %s' % rsp)
if rsp.status_code == HTTPStatus.OK:
# 在当前目录下保存图片
for result in rsp.output.results:
file_name = PurePosixPath(unquote(urlparse(result.url).path)).parts[-1]
with open('./%s' % file_name, 'wb+') as f:
f.write(requests.get(result.url).content)
print(f'save image to {file_name}')
else:
print('sync_call Failed, status_code: %s, code: %s, message: %s' %
(rsp.status_code, rsp.code, rsp.message))
image = Image.open(file_name)
return image, seed
examples = [
"A capybara wearing a suit holding a sign that reads Hello World",
"""A young girl wearing school uniform stands in a classroom, writing on a chalkboard. The text "Introducing Qwen-Image, a foundational image generation model that excels in complex text rendering and precise image editing" appears in neat white chalk at the center of the blackboard. Soft natural light filters through windows, casting gentle shadows. The scene is rendered in a realistic photography style with fine details, shallow depth of field, and warm tones. The girl's focused expression and chalk dust in the air add dynamism. Background elements include desks and educational posters, subtly blurred to emphasize the central action. Ultra-detailed 32K resolution, DSLR-quality, soft bokeh effect, documentary-style composition""",
"Realistic still life photography style: A single, fresh apple resting on a clean, soft-textured surface. The apple is slightly off-center, softly backlit to highlight its natural gloss and subtle color gradients—deep crimson red blending into light golden hues. Fine details such as small blemishes, dew drops, and a few light highlights enhance its lifelike appearance. A shallow depth of field gently blurs the neutral background, drawing full attention to the apple. Hyper-detailed 8K resolution, studio lighting, photorealistic render, emphasizing texture and form."
]
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
# gr.Markdown('<div style="text-align: center;"><a href="https://huggingface.co/Qwen/Qwen-Image"><img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" width="400"/></a></div>')
gr.Markdown('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="your_alt_text" width="400" style="display: block; margin: 0 auto;">')
gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image) to run locally with ComfyUI or diffusers.")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
aspect_ratio = gr.Radio(
label="Aspect ratio(width:height)",
choices=["1:1", "16:9", "9:16", "4:3", "3:4"],
value="16:9",
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False, cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer_diffusers,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
aspect_ratio,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |