Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration | |
| import spaces | |
| # Model configuration | |
| MODEL_ID = "numind/NuMarkdown-8B-reasoning" | |
| # Load processor | |
| processor = AutoProcessor.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| min_pixels=100*28*28, | |
| max_pixels=5000*28*28 | |
| ) | |
| # Load model | |
| model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID, | |
| torch_dtype=torch.bfloat16, | |
| attn_implementation="flash_attention_2", | |
| device_map="auto", | |
| trust_remote_code=True, | |
| ) | |
| def process_image(image): | |
| """ | |
| Process an image using the NuMarkdown-8B-reasoning model. | |
| Args: | |
| image: PIL Image object | |
| Returns: | |
| tuple: (reasoning, answer) extracted from model output | |
| """ | |
| if image is None: | |
| return "Please upload an image.", "" | |
| try: | |
| # Convert image to RGB if needed | |
| img = image.convert("RGB") | |
| # Prepare messages for the model | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| {"type": "image"}, | |
| ], | |
| }] | |
| # Apply chat template | |
| prompt = processor.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| # Process inputs | |
| model_input = processor( | |
| text=prompt, | |
| images=[img], | |
| return_tensors="pt" | |
| ).to(model.device) | |
| # Generate output | |
| with torch.no_grad(): | |
| model_output = model.generate( | |
| **model_input, | |
| temperature=0.7, | |
| max_new_tokens=5000 | |
| ) | |
| # Decode result | |
| result = processor.decode(model_output[0]) | |
| # Extract reasoning and answer | |
| try: | |
| reasoning = result.split("<think>")[1].split("</think>")[0] | |
| except IndexError: | |
| reasoning = "No reasoning found in output." | |
| try: | |
| answer = result.split("<answer>")[1].split("</answer>")[0] | |
| except IndexError: | |
| answer = "No answer found in output." | |
| return reasoning.strip(), answer.strip() | |
| except Exception as e: | |
| error_msg = f"Error processing image: {str(e)}" | |
| return error_msg, error_msg | |
| def create_interface(): | |
| """Create and configure the Gradio interface.""" | |
| with gr.Blocks( | |
| title="NuMarkdown-8B Reasoning Demo", | |
| theme=gr.themes.Soft(), | |
| css=""" | |
| .gradio-container { | |
| max-width: 1200px !important; | |
| } | |
| .image-container, .output-container { | |
| height: 600px !important; | |
| } | |
| """ | |
| ) as demo: | |
| gr.Markdown( | |
| """ | |
| # π€ NuMarkdown-8B Reasoning Demo | |
| Upload an image and let the NuMarkdown-8B model analyze it with detailed reasoning. | |
| The model will show both its thinking process and final answer. | |
| """ | |
| ) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### πΈ Upload Your Image") | |
| image_input = gr.Image( | |
| type="pil", | |
| label="Input Image", | |
| height=600, | |
| container=True | |
| ) | |
| process_btn = gr.Button( | |
| "π Analyze Image", | |
| variant="primary", | |
| size="lg" | |
| ) | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π§ Model Reasoning") | |
| reasoning_output = gr.Textbox( | |
| label="Thinking Process", | |
| lines=15, | |
| max_lines=20, | |
| placeholder="The model's reasoning will appear here...", | |
| container=True, | |
| show_copy_button=True | |
| ) | |
| gr.Markdown("### π‘ Final Answer") | |
| answer_output = gr.Textbox( | |
| label="Answer", | |
| lines=10, | |
| max_lines=15, | |
| placeholder="The model's answer will appear here...", | |
| container=True, | |
| show_copy_button=True | |
| ) | |
| # Event handlers | |
| process_btn.click( | |
| fn=process_image, | |
| inputs=[image_input], | |
| outputs=[reasoning_output, answer_output], | |
| show_progress=True | |
| ) | |
| # Also trigger on image upload | |
| image_input.change( | |
| fn=process_image, | |
| inputs=[image_input], | |
| outputs=[reasoning_output, answer_output], | |
| show_progress=True | |
| ) | |
| gr.Markdown( | |
| """ | |
| --- | |
| ### π How to Use: | |
| 1. **Upload an image** using the file uploader on the left | |
| 2. **Click "Analyze Image"** or wait for automatic processing | |
| 3. **View the results** on the right: | |
| - **Reasoning**: See how the model thinks through the problem | |
| - **Answer**: Get the final conclusion or analysis | |
| ### π§ Model Details: | |
| - **Model**: numind/NuMarkdown-8B-reasoning | |
| - **Type**: Vision-Language Model with reasoning capabilities | |
| - **Features**: Detailed thinking process + final answer | |
| *This demo runs on HuggingFace Zero GPU Spaces for fast inference.* | |
| """ | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = create_interface() | |
| demo.launch( | |
| share=True, | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| show_error=True | |
| ) | |