import gradio as gr import torch from diffusers import DiffusionPipeline print(f"Is CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") pipe_vq = DiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq", torch_dtype=torch.float16, revision="fp16").to("cuda") else: pipe_vq = DiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq") title = "VQ Diffusion vs. Stable Diffusion 1-5" description = "[VQ-Diffusion-ITHQ](https://huggingface.co/microsoft/vq-diffusion-ithq) for text to image generation." def inference(text): output_vq_diffusion = pipe_vq(text, truncation_rate=0.86).images[0] return output_vq_diffusion io = gr.Interface( inference, gr.Textbox(lines=3), outputs=[ gr.Image(type="pil", label="VQ-Diffusion"), ], title=title, description=description ) io.launch()