Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,17 @@
|
|
1 |
-
import torch
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
-
|
5 |
-
import torchvision.transforms as T
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
self.fc = torch.nn.Linear(16*111*111, 2) # 2分類為例
|
13 |
-
|
14 |
-
def forward(self, x):
|
15 |
-
x = self.conv(x)
|
16 |
-
x = torch.relu(x)
|
17 |
-
x = x.view(x.size(0), -1)
|
18 |
-
x = self.fc(x)
|
19 |
-
return torch.softmax(x, dim=1)
|
20 |
-
|
21 |
-
# 載入模型與權重
|
22 |
-
model = SimpleCNN()
|
23 |
-
model.load_state_dict(torch.load("salg_model.pt", map_location="cpu"))
|
24 |
-
model.eval()
|
25 |
-
|
26 |
-
# 影像預處理
|
27 |
-
transform = T.Compose([
|
28 |
-
T.Resize((224, 224)),
|
29 |
-
T.ToTensor(),
|
30 |
-
])
|
31 |
-
|
32 |
-
def predict(image):
|
33 |
-
img = Image.fromarray(image.astype('uint8'), 'RGB')
|
34 |
-
input_tensor = transform(img).unsqueeze(0) # 加 batch 維度
|
35 |
-
with torch.no_grad():
|
36 |
-
pred = model(input_tensor)
|
37 |
-
# 取最高機率標籤
|
38 |
-
pred_label = torch.argmax(pred, dim=1).item()
|
39 |
-
confidence = pred[0][pred_label].item()
|
40 |
-
# 在圖上標示結果(簡單做法)
|
41 |
-
result_img = image.copy()
|
42 |
-
import cv2
|
43 |
-
cv2.putText(result_img, f"Label: {pred_label} Conf: {confidence:.2f}",
|
44 |
-
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)
|
45 |
-
return result_img, f"Label: {pred_label}, Confidence: {confidence:.2f}"
|
46 |
|
|
|
47 |
with gr.Blocks() as demo:
|
48 |
-
gr.Markdown("## 🦺 Helmet
|
49 |
-
gr.Markdown("
|
50 |
|
51 |
with gr.Row():
|
52 |
with gr.Column():
|
@@ -55,8 +20,8 @@ with gr.Blocks() as demo:
|
|
55 |
|
56 |
with gr.Column():
|
57 |
image_output = gr.Image(type="numpy", label="推論結果")
|
58 |
-
result_label = gr.Textbox(label="辨識摘要")
|
59 |
|
60 |
-
detect_button.click(fn=
|
61 |
|
62 |
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import random
|
|
|
4 |
|
5 |
+
# 模擬辨識按鈕的回傳邏輯
|
6 |
+
def fake_detect(image):
|
7 |
+
# 隨機回傳 "yap" 或 "not"
|
8 |
+
result = random.choice(["yap", "not"])
|
9 |
+
return image, result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# 建立 Gradio 介面
|
12 |
with gr.Blocks() as demo:
|
13 |
+
gr.Markdown("## 🦺 Helmet ")
|
14 |
+
gr.Markdown("請上傳一張圖片,然後點擊「辨識」按鈕模擬結果展示")
|
15 |
|
16 |
with gr.Row():
|
17 |
with gr.Column():
|
|
|
20 |
|
21 |
with gr.Column():
|
22 |
image_output = gr.Image(type="numpy", label="推論結果")
|
23 |
+
result_label = gr.Textbox(label="辨識摘要", placeholder="結果")
|
24 |
|
25 |
+
detect_button.click(fn=fake_detect, inputs=image_input, outputs=[image_output, result_label])
|
26 |
|
27 |
demo.launch()
|