主要
Browse files
app.py
CHANGED
@@ -4,19 +4,22 @@ import gradio as gr
|
|
4 |
# 載入模型
|
5 |
learn = load_learner('gender_model.pkl')
|
6 |
|
|
|
7 |
labels = learn.dls.vocab
|
8 |
|
|
|
9 |
def classify_image(img):
|
10 |
pred, idx, probs = learn.predict(img)
|
11 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
12 |
|
13 |
-
#
|
14 |
demo = gr.Interface(
|
15 |
fn=classify_image,
|
16 |
inputs=gr.Image(type="pil"),
|
17 |
outputs=gr.Label(num_top_classes=4),
|
18 |
-
title="SDG5
|
19 |
-
description="
|
20 |
)
|
21 |
|
|
|
22 |
demo.launch()
|
|
|
4 |
# 載入模型
|
5 |
learn = load_learner('gender_model.pkl')
|
6 |
|
7 |
+
# 分類標籤
|
8 |
labels = learn.dls.vocab
|
9 |
|
10 |
+
# 預測函式
|
11 |
def classify_image(img):
|
12 |
pred, idx, probs = learn.predict(img)
|
13 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
14 |
|
15 |
+
# 建立 Gradio 介面
|
16 |
demo = gr.Interface(
|
17 |
fn=classify_image,
|
18 |
inputs=gr.Image(type="pil"),
|
19 |
outputs=gr.Label(num_top_classes=4),
|
20 |
+
title="SDG5 性別平等影像分類模型",
|
21 |
+
description="上傳一張職業相關圖片,模型將預測其類別:女性醫護、男性醫護、女性工程師、男性工程師。"
|
22 |
)
|
23 |
|
24 |
+
# 執行應用
|
25 |
demo.launch()
|