Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- utils/__pycache__/data_utils.cpython-310.pyc +0 -0
- utils/__pycache__/visualizer.cpython-310.pyc +0 -0
- utils/data_utils.py +250 -0
- utils/pascal2coco.py +258 -0
- utils/visualizer.py +1283 -0
utils/__pycache__/data_utils.cpython-310.pyc
ADDED
|
Binary file (5.99 kB). View file
|
|
|
utils/__pycache__/visualizer.cpython-310.pyc
ADDED
|
Binary file (42.5 kB). View file
|
|
|
utils/data_utils.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
These functions are work on a set of images in a directory.
|
| 6 |
+
"""
|
| 7 |
+
import cv2
|
| 8 |
+
import copy
|
| 9 |
+
import glob
|
| 10 |
+
import os
|
| 11 |
+
import re
|
| 12 |
+
import sys
|
| 13 |
+
import numpy as np
|
| 14 |
+
from PIL import Image
|
| 15 |
+
from subprocess import check_output
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def minify(datadir, destdir, factors=[], resolutions=[], extend='png'):
|
| 19 |
+
"""Using mogrify to resize rgb image
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
datadir(str): source data path
|
| 23 |
+
destdir(str): save path
|
| 24 |
+
factor(int): ratio of original width or height
|
| 25 |
+
resolutions(int): new width or height
|
| 26 |
+
"""
|
| 27 |
+
imgs = [os.path.join(datadir, f) for f in sorted(os.listdir(datadir))]
|
| 28 |
+
imgs = [f for f in imgs if any([f.endswith(ex) for ex in ['JPG', 'jpg', 'png', 'jpeg', 'PNG']])]
|
| 29 |
+
|
| 30 |
+
wd = os.getcwd()
|
| 31 |
+
|
| 32 |
+
for r in factors + resolutions:
|
| 33 |
+
if isinstance(r, int):
|
| 34 |
+
name = 'images_{}'.format(r)
|
| 35 |
+
resizearg = '{}%'.format(int(r))
|
| 36 |
+
else:
|
| 37 |
+
name = 'images_{}x{}'.format(r[1], r[0])
|
| 38 |
+
resizearg = '{}x{}'.format(r[1], r[0])
|
| 39 |
+
if os.path.exists(destdir):
|
| 40 |
+
continue
|
| 41 |
+
|
| 42 |
+
print('Minifying', r, datadir)
|
| 43 |
+
|
| 44 |
+
os.makedirs(destdir)
|
| 45 |
+
check_output('cp {}/* {}'.format(datadir, destdir), shell=True)
|
| 46 |
+
|
| 47 |
+
ext = imgs[0].split('.')[-1]
|
| 48 |
+
args = ' '.join(['mogrify', '-resize', resizearg, '-format', extend, '*.{}'.format(ext)])
|
| 49 |
+
|
| 50 |
+
print(args)
|
| 51 |
+
os.chdir(destdir)
|
| 52 |
+
check_output(args, shell=True)
|
| 53 |
+
os.chdir(wd)
|
| 54 |
+
|
| 55 |
+
if ext != extend:
|
| 56 |
+
check_output('rm {}/*.{}'.format(destdir, ext), shell=True)
|
| 57 |
+
print('Removed duplicates')
|
| 58 |
+
print('Done')
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def resizemask(datadir, destdir, factors=[], resolutions=[]):
|
| 62 |
+
"""Using PIL.Image.resize to resize binary images with nearest-neighbor
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
datadir(str): source data path
|
| 66 |
+
destdir(str): save path
|
| 67 |
+
factor(float): 1/N original width or height
|
| 68 |
+
resolutions(int): new width or height
|
| 69 |
+
"""
|
| 70 |
+
mask_paths = sorted([p for p in glob.glob(os.path.join(datadir, '*'))
|
| 71 |
+
if re.search('/*\.(jpg|jpeg|png|gif|bmp)', str(p))])
|
| 72 |
+
old_size = np.array(Image.open(mask_paths[0])).shape
|
| 73 |
+
if len(old_size) != 2:
|
| 74 |
+
old_size = old_size[:2]
|
| 75 |
+
|
| 76 |
+
for r in factors + resolutions:
|
| 77 |
+
if isinstance(r, int):
|
| 78 |
+
width = int(old_size[0] / r)
|
| 79 |
+
height = int(old_size[1] / r)
|
| 80 |
+
else:
|
| 81 |
+
width = r[0]
|
| 82 |
+
height = r[1]
|
| 83 |
+
if os.path.exists(destdir):
|
| 84 |
+
continue
|
| 85 |
+
else:
|
| 86 |
+
os.makedirs(destdir)
|
| 87 |
+
|
| 88 |
+
for i, mask_path in enumerate(mask_paths):
|
| 89 |
+
mask = Image.open(mask_path)
|
| 90 |
+
new_mask = mask.resize((width, height))
|
| 91 |
+
|
| 92 |
+
base_filename = mask_path.split('/')[-1]
|
| 93 |
+
new_mask.save(os.path.join(destdir, base_filename))
|
| 94 |
+
|
| 95 |
+
print('Done')
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def getbbox(mask, exponent=1):
|
| 99 |
+
"""Computing bboxes of foreground in the masks
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
mask: binary image
|
| 103 |
+
exponent(int): the size (width or height) should be a multiple of exponent
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
x_center = mask.shape[0] // 2
|
| 107 |
+
y_center = mask.shape[1] // 2
|
| 108 |
+
|
| 109 |
+
x, y = (mask != 0).nonzero() # x:height; y:width
|
| 110 |
+
bbox = [min(x), max(x), min(y), max(y)]
|
| 111 |
+
|
| 112 |
+
# nearest rectangle box that height/width is the multipler of a factor
|
| 113 |
+
x_min = np.max([bbox[1] - x_center, x_center - bbox[0]]) * 2
|
| 114 |
+
y_min = np.max([bbox[3] - y_center, y_center - bbox[2]]) * 2
|
| 115 |
+
new_x = int(np.ceil(x_min / exponent) * exponent)
|
| 116 |
+
new_y = int(np.ceil(y_min / exponent) * exponent)
|
| 117 |
+
# print("A rectangle to bound the object with width and height:", (new_y, new_x))
|
| 118 |
+
|
| 119 |
+
bbox = [x_center - new_x // 2, x_center + new_x // 2,
|
| 120 |
+
y_center - new_y // 2, y_center + new_y // 2]
|
| 121 |
+
return bbox
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def centercrop(img, new_size):
|
| 125 |
+
"""Computing bboxes of foreground in the masks
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
img: PIL image
|
| 129 |
+
exponent(int): the size (width or height) should be a multiple of exponent
|
| 130 |
+
"""
|
| 131 |
+
if len(new_size) == 2:
|
| 132 |
+
new_width = new_size[0]
|
| 133 |
+
new_height = new_size[1]
|
| 134 |
+
else:
|
| 135 |
+
print('ERROR: Valid size not found. Aborting')
|
| 136 |
+
sys.exit()
|
| 137 |
+
|
| 138 |
+
width, height = img.size
|
| 139 |
+
left = (width - new_width) // 2
|
| 140 |
+
top = (height - new_height) // 2
|
| 141 |
+
right = (width + new_width) // 2
|
| 142 |
+
bottom = (height + new_height) // 2
|
| 143 |
+
|
| 144 |
+
new_img = img.crop((left, top, right, bottom))
|
| 145 |
+
|
| 146 |
+
return new_img
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def invertmask(img, mask):
|
| 150 |
+
# mask only has 0 and 1, extract the foreground
|
| 151 |
+
fg = cv2.bitwise_and(img, img, mask=mask)
|
| 152 |
+
|
| 153 |
+
# create white background
|
| 154 |
+
black_bg = np.zeros(img.shape, np.uint8)
|
| 155 |
+
white_bg = ~black_bg
|
| 156 |
+
|
| 157 |
+
# masking the white background
|
| 158 |
+
white_bg = cv2.bitwise_and(white_bg, white_bg, mask=mask)
|
| 159 |
+
white_bg = ~white_bg
|
| 160 |
+
|
| 161 |
+
# foreground will be added to the black area
|
| 162 |
+
new_img = cv2.add(white_bg, img)
|
| 163 |
+
|
| 164 |
+
# invert mask to 0 for foreground and 255 for background
|
| 165 |
+
new_mask = np.where(mask == 0, 255, 0)
|
| 166 |
+
|
| 167 |
+
return new_img, new_mask
|
| 168 |
+
|
| 169 |
+
def gen_square_crops(img, bbox, padding_color=(255, 255, 255), upscale_quality=Image.LANCZOS):
|
| 170 |
+
"""
|
| 171 |
+
Generate square crops from an image based on a bounding box.
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
img: PIL Image object
|
| 175 |
+
bbox: Tuple of (x0, y0, x1, y1) coordinates
|
| 176 |
+
padding_color: Color for padding (default white)
|
| 177 |
+
upscale_quality: Resampling method for upscaling (default LANCZOS)
|
| 178 |
+
|
| 179 |
+
Returns:
|
| 180 |
+
PIL Image object with square crop
|
| 181 |
+
"""
|
| 182 |
+
img_width, img_height = img.size
|
| 183 |
+
x0, y0, x1, y1 = bbox
|
| 184 |
+
|
| 185 |
+
# Calculate original width and height of the bbox
|
| 186 |
+
bbox_width = x1 - x0
|
| 187 |
+
bbox_height = y1 - y0
|
| 188 |
+
|
| 189 |
+
# Determine the size of the square crop
|
| 190 |
+
new_size = max(bbox_width, bbox_height)
|
| 191 |
+
|
| 192 |
+
# Calculate center of the original bbox
|
| 193 |
+
center_x = x0 + bbox_width // 2
|
| 194 |
+
center_y = y0 + bbox_height // 2
|
| 195 |
+
|
| 196 |
+
# Calculate new coordinates that maintain the square aspect ratio
|
| 197 |
+
half_size = new_size // 2
|
| 198 |
+
|
| 199 |
+
# Adjust coordinates to stay within image boundaries
|
| 200 |
+
new_x0 = max(0, center_x - half_size)
|
| 201 |
+
new_y0 = max(0, center_y - half_size)
|
| 202 |
+
new_x1 = min(img_width, center_x + half_size)
|
| 203 |
+
new_y1 = min(img_height, center_y + half_size)
|
| 204 |
+
|
| 205 |
+
# If we're at the edges, adjust the other side to maintain square size
|
| 206 |
+
if new_x0 == 0 and new_x1 < img_width:
|
| 207 |
+
new_x1 = min(img_width, new_x0 + new_size)
|
| 208 |
+
elif new_x1 == img_width and new_x0 > 0:
|
| 209 |
+
new_x0 = max(0, new_x1 - new_size)
|
| 210 |
+
|
| 211 |
+
if new_y0 == 0 and new_y1 < img_height:
|
| 212 |
+
new_y1 = min(img_height, new_y0 + new_size)
|
| 213 |
+
elif new_y1 == img_height and new_y0 > 0:
|
| 214 |
+
new_y0 = max(0, new_y1 - new_size)
|
| 215 |
+
|
| 216 |
+
# Crop the image
|
| 217 |
+
cropped_img = img.crop((new_x0, new_y0, new_x1, new_y1))
|
| 218 |
+
|
| 219 |
+
# Create a new square image
|
| 220 |
+
square_img = Image.new('RGB', (new_size, new_size), padding_color)
|
| 221 |
+
|
| 222 |
+
# Calculate paste position (centered)
|
| 223 |
+
paste_x = (new_size - (new_x1 - new_x0)) // 2
|
| 224 |
+
paste_y = (new_size - (new_y1 - new_y0)) // 2
|
| 225 |
+
|
| 226 |
+
# Paste the cropped image onto the square canvas
|
| 227 |
+
square_img.paste(cropped_img, (paste_x, paste_y))
|
| 228 |
+
|
| 229 |
+
# If the original crop was smaller than new_size, we need to resize with anti-aliasing
|
| 230 |
+
if (new_x1 - new_x0) < new_size or (new_y1 - new_y0) < new_size:
|
| 231 |
+
# Calculate the scale factor
|
| 232 |
+
scale = new_size / max(bbox_width, bbox_height)
|
| 233 |
+
|
| 234 |
+
# Resize the original crop with anti-aliasing
|
| 235 |
+
resized_crop = img.crop((x0, y0, x1, y1)).resize(
|
| 236 |
+
(int(bbox_width * scale), int(bbox_height * scale)),
|
| 237 |
+
resample=upscale_quality
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
# Create new square image
|
| 241 |
+
square_img = Image.new('RGB', (new_size, new_size), padding_color)
|
| 242 |
+
|
| 243 |
+
# Calculate centered position
|
| 244 |
+
paste_x = (new_size - resized_crop.width) // 2
|
| 245 |
+
paste_y = (new_size - resized_crop.height) // 2
|
| 246 |
+
|
| 247 |
+
# Paste the resized image
|
| 248 |
+
square_img.paste(resized_crop, (paste_x, paste_y))
|
| 249 |
+
|
| 250 |
+
return square_img
|
utils/pascal2coco.py
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
parse pascal_voc XML file to COCO json
|
| 6 |
+
"""
|
| 7 |
+
import torch
|
| 8 |
+
import glob
|
| 9 |
+
import os
|
| 10 |
+
import random
|
| 11 |
+
import re
|
| 12 |
+
import shutil
|
| 13 |
+
import json
|
| 14 |
+
import xml.etree.ElementTree as ET
|
| 15 |
+
from sklearn.model_selection import train_test_split
|
| 16 |
+
from data_utils import minify
|
| 17 |
+
|
| 18 |
+
CATEGORIES = ["000_aveda_shampoo", "001_binder_clips_median", "002_binder_clips_small", "003_bombik_bucket",
|
| 19 |
+
"004_bonne_maman_blueberry", "005_bonne_maman_raspberry", "006_bonne_maman_strawberry",
|
| 20 |
+
"007_costa_caramel", "008_essential_oil_bergamot", "009_garlic_toast_spread", "010_handcream_avocado",
|
| 21 |
+
"011_hb_calcium", "012_hb_grapeseed", "013_hb_marine_collagen", "014_hellmanns_mayonnaise",
|
| 22 |
+
"015_illy_blend", "016_japanese_finger_cookies", "017_john_west_canned_tuna", "018_kerastase_shampoo",
|
| 23 |
+
"019_kiehls_facial_cream", "020_kiihne_balsamic", "021_kiihne_honey_mustard", "022_lindor_matcha",
|
| 24 |
+
"023_lindor_salted_caramel", "024_lush_mask", "025_pasta_sauce_black_pepper", "026_pasta_sauce_tomato",
|
| 25 |
+
"027_pepsi", "028_portable_yogurt_machine", "029_selfile_stick", "030_sour_lemon_drops",
|
| 26 |
+
"031_sticky_notes", "032_stridex_green", "033_thermos_flask_cream", "034_thermos_flask_muji",
|
| 27 |
+
"035_thermos_flask_sliver", "036_tragata_olive_oil", "037_tulip_luncheon_meat", "038_unicharm_cotton_pad",
|
| 28 |
+
"039_vinda_tissue", "040_wrigley_doublemint_gum", "041_baseball_cap_black", "042_baseball_cap_pink",
|
| 29 |
+
"043_bfe_facial_mask", "044_corgi_doll", "045_dinosaur_doll", "046_geo_mocha", "047_geo_roast_charcoal",
|
| 30 |
+
"048_instant_noodle_black", "049_instant_noodle_red", "050_nabati_cheese_wafer", "051_truffettes",
|
| 31 |
+
"052_acnes_cream", "053_aveda_conditioner", "054_banana_milk_drink", "055_candle_beast",
|
| 32 |
+
"056_china_persimmon", "057_danisa_butter_cookies", "058_effaclar_duo", "059_evelom_cleanser",
|
| 33 |
+
"060_glasses_box_blone", "061_handcream_iris", "062_handcream_lavender", "063_handcream_rosewater",
|
| 34 |
+
"064_handcream_summer_hill", "065_hr_serum", "066_japanese_chocolate", "067_kerastase_hair_treatment",
|
| 35 |
+
"068_kiehls_serum", "069_korean_beef_marinade", "070_korean_doenjang", "071_korean_gochujang",
|
| 36 |
+
"072_korean_ssamjang", "073_loccitane_soap", "074_marvis_toothpaste_purple", "075_mouse_thinkpad",
|
| 37 |
+
"076_oatly_chocolate", "077_oatly_original", "078_ousa_grated_cheese", "079_polaroid_film",
|
| 38 |
+
"080_skinceuticals_be", "081_skinceuticals_cf", "082_skinceuticals_phyto", "083_stapler_black",
|
| 39 |
+
"084_stapler_blue", "085_sunscreen_blue", "086_tempo_pocket_tissue", "087_thermos_flask_purple",
|
| 40 |
+
"088_uha_matcha", "089_urban_decay_spray", "090_vitaboost_multivitamin", "091_watercolor_penbox",
|
| 41 |
+
"092_youthlt_bilberry_complex", "093_daiso_mod_remover", "094_kaneyo_kitchen_bleach",
|
| 42 |
+
"095_lays_chip_bag_blue", "096_lays_chip_bag_green", "097_lays_chip_tube_auburn",
|
| 43 |
+
"098_lays_chip_tube_green", "099_mug_blue"]
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def readXML(xml_file):
|
| 47 |
+
data = []
|
| 48 |
+
tree = ET.parse(xml_file)
|
| 49 |
+
root = tree.getroot()
|
| 50 |
+
info = {}
|
| 51 |
+
info['dataname'] = []
|
| 52 |
+
info['filename'] = []
|
| 53 |
+
info['width'] = 1024
|
| 54 |
+
info['height'] = 768
|
| 55 |
+
info['depth'] = 1
|
| 56 |
+
|
| 57 |
+
for eles in root:
|
| 58 |
+
if eles.tag == 'folder':
|
| 59 |
+
info['dataname'] = eles.text
|
| 60 |
+
elif eles.tag == 'filename':
|
| 61 |
+
info['filename'] = eles.text
|
| 62 |
+
elif eles.tag == 'size':
|
| 63 |
+
for elem in eles:
|
| 64 |
+
if elem.tag == 'width':
|
| 65 |
+
info['width'] = elem.text
|
| 66 |
+
elif elem.tag == 'height':
|
| 67 |
+
info['height'] = elem.text
|
| 68 |
+
elif elem.tag == 'depth':
|
| 69 |
+
info['depth'] = elem.text
|
| 70 |
+
else:
|
| 71 |
+
continue
|
| 72 |
+
elif eles.tag == 'object':
|
| 73 |
+
anno = dict()
|
| 74 |
+
for elem in eles:
|
| 75 |
+
if elem.tag == 'name':
|
| 76 |
+
anno['name'] = elem.text
|
| 77 |
+
elif elem.tag == 'bndbox':
|
| 78 |
+
for subelem in elem:
|
| 79 |
+
if subelem.tag == 'xmin':
|
| 80 |
+
anno['xmin'] = float(subelem.text)
|
| 81 |
+
elif subelem.tag == 'xmax':
|
| 82 |
+
anno['xmax'] = float(subelem.text)
|
| 83 |
+
elif subelem.tag == 'ymin':
|
| 84 |
+
anno['ymin'] = float(subelem.text)
|
| 85 |
+
elif subelem.tag == 'ymax':
|
| 86 |
+
anno['ymax'] = float(subelem.text)
|
| 87 |
+
else:
|
| 88 |
+
continue
|
| 89 |
+
data.append(anno)
|
| 90 |
+
|
| 91 |
+
return info, data
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def getCOCOjson(root_path, save_path, factor=1.0, flag=None):
|
| 95 |
+
# parse all .xml files to a .json file
|
| 96 |
+
dataset = dict()
|
| 97 |
+
dataset['info'] = {}
|
| 98 |
+
dataset['licenses'] = []
|
| 99 |
+
dataset['images'] = []
|
| 100 |
+
dataset['annotations'] = []
|
| 101 |
+
dataset['categories'] = []
|
| 102 |
+
|
| 103 |
+
dataset['info']['description'] = 'RealWorld Dataset'
|
| 104 |
+
dataset['info']['url'] = ''
|
| 105 |
+
dataset['info']['version'] = '1.0'
|
| 106 |
+
dataset['info']['year'] = 2023
|
| 107 |
+
dataset['info']['contributor'] = ''
|
| 108 |
+
dataset['info']['date_created'] = ''
|
| 109 |
+
|
| 110 |
+
licenses = {}
|
| 111 |
+
licenses['url'] = ''
|
| 112 |
+
licenses['id'] = 1
|
| 113 |
+
licenses['name'] = ''
|
| 114 |
+
dataset['licenses'].append(licenses)
|
| 115 |
+
|
| 116 |
+
all_anno_count = 0
|
| 117 |
+
img_list = sorted([p for p in glob.glob(os.path.join(root_path, 'images', '*'))
|
| 118 |
+
if re.search('/*\.(jpg|jpeg|png|gif|bmp)', str(p))])
|
| 119 |
+
for i_img, img_file in enumerate(img_list):
|
| 120 |
+
file_name = os.path.basename(img_file)
|
| 121 |
+
if flag == 'test':
|
| 122 |
+
anno_path = os.path.join(root_path, 'annotations',
|
| 123 |
+
file_name.split('.')[0] + '.xml') # .xml files for RealScenes
|
| 124 |
+
else:
|
| 125 |
+
anno_path = os.path.join(root_path, 'annotations',
|
| 126 |
+
file_name.split('_')[0] + '.xml') # .xml files for cut-paste-learn
|
| 127 |
+
|
| 128 |
+
info, objects = readXML(anno_path)
|
| 129 |
+
|
| 130 |
+
# images
|
| 131 |
+
images = {}
|
| 132 |
+
images['license'] = 1
|
| 133 |
+
images['file_name'] = file_name
|
| 134 |
+
images['coco_url'] = ''
|
| 135 |
+
images['height'] = int(float(info['height']) * factor)
|
| 136 |
+
images['width'] = int(float(info['width']) * factor)
|
| 137 |
+
images['date_captured'] = ''
|
| 138 |
+
images['flickr_url'] = ''
|
| 139 |
+
images['id'] = int(i_img)
|
| 140 |
+
|
| 141 |
+
dataset['images'].append(images)
|
| 142 |
+
|
| 143 |
+
# annotations
|
| 144 |
+
for object in objects:
|
| 145 |
+
if int(object['name'].split('_')[0]) > len(CATEGORIES) - 1:
|
| 146 |
+
continue
|
| 147 |
+
# bbox: [xmin,ymin,w,h]
|
| 148 |
+
bbox = []
|
| 149 |
+
bbox.append(object['xmin'])
|
| 150 |
+
bbox.append(object['ymin'])
|
| 151 |
+
bbox.append(object['xmax'] - object['xmin'])
|
| 152 |
+
bbox.append(object['ymax'] - object['ymin'])
|
| 153 |
+
|
| 154 |
+
if factor != 1:
|
| 155 |
+
bbox = [x * factor for x in bbox]
|
| 156 |
+
|
| 157 |
+
# when segmentation annotation not given, use [[x1,y1,x2,y1,x2,y2,x1,y2]] instead
|
| 158 |
+
segmentation = [[bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1],
|
| 159 |
+
bbox[0] + bbox[2], bbox[1] + bbox[3], bbox[0], bbox[1] + bbox[3]]]
|
| 160 |
+
|
| 161 |
+
annotations = {}
|
| 162 |
+
annotations['segmentation'] = segmentation
|
| 163 |
+
annotations['area'] = bbox[-1] * bbox[-2]
|
| 164 |
+
annotations['iscrowd'] = 0
|
| 165 |
+
annotations['image_id'] = int(i_img)
|
| 166 |
+
annotations['bbox'] = bbox
|
| 167 |
+
annotations['category_id'] = int(object['name'].split('_')[0])
|
| 168 |
+
annotations['id'] = all_anno_count
|
| 169 |
+
|
| 170 |
+
dataset['annotations'].append(annotations)
|
| 171 |
+
all_anno_count += 1
|
| 172 |
+
|
| 173 |
+
# categories
|
| 174 |
+
for i_cat, cat in enumerate(CATEGORIES):
|
| 175 |
+
categories = {}
|
| 176 |
+
categories['supercategory'] = cat
|
| 177 |
+
categories['id'] = i_cat
|
| 178 |
+
categories['name'] = cat
|
| 179 |
+
dataset['categories'].append(categories)
|
| 180 |
+
|
| 181 |
+
with open(save_path, 'w', encoding='utf-8') as f:
|
| 182 |
+
json.dump(dataset, f)
|
| 183 |
+
print('ok')
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
if __name__ == '__main__':
|
| 187 |
+
|
| 188 |
+
# root_path = "../syndata-generation/syndata_1"
|
| 189 |
+
|
| 190 |
+
# image_paths = os.listdir(os.path.join(root_path, 'images'))
|
| 191 |
+
# # train:val = 0.75:0.25
|
| 192 |
+
# image_train, image_val = train_test_split(image_paths, test_size=0.25, random_state=77)
|
| 193 |
+
|
| 194 |
+
# # copy image to train set --> create train_json
|
| 195 |
+
# if not os.path.exists(os.path.join(root_path, 'train')):
|
| 196 |
+
# os.makedirs(os.path.join(root_path, 'train', 'images'))
|
| 197 |
+
# os.makedirs(os.path.join(root_path, 'train/annotations'))
|
| 198 |
+
|
| 199 |
+
# for name in image_train:
|
| 200 |
+
# shutil.copy(os.path.join(root_path, 'images', name),
|
| 201 |
+
# os.path.join(root_path, 'train/images', name))
|
| 202 |
+
# shutil.copy(os.path.join(root_path, 'annotations', name.split('_')[0] + '.xml'),
|
| 203 |
+
# os.path.join(root_path, 'train/annotations', name.split('_')[0] + '.xml'))
|
| 204 |
+
|
| 205 |
+
# getCOCOjson(os.path.join(root_path, 'train'), os.path.join(root_path, 'instances_train.json'))
|
| 206 |
+
|
| 207 |
+
# # copy image to val set --> create val_json
|
| 208 |
+
# if not os.path.exists(os.path.join(root_path, 'val')):
|
| 209 |
+
# os.makedirs(os.path.join(root_path, 'val/images'))
|
| 210 |
+
# os.makedirs(os.path.join(root_path, 'val/annotations'))
|
| 211 |
+
|
| 212 |
+
# for name in image_val:
|
| 213 |
+
# shutil.copy(os.path.join(root_path, 'images', name),
|
| 214 |
+
# os.path.join(root_path, 'val/images', name))
|
| 215 |
+
# shutil.copy(os.path.join(root_path, 'annotations', name.split('_')[0] + '.xml'),
|
| 216 |
+
# os.path.join(root_path, 'val/annotations', name.split('_')[0] + '.xml'))
|
| 217 |
+
|
| 218 |
+
# getCOCOjson(os.path.join(root_path, 'val'), os.path.join(root_path, 'instances_val.json'))
|
| 219 |
+
|
| 220 |
+
# test data
|
| 221 |
+
|
| 222 |
+
level = 'hard' # 'all', 'hard', 'easy'
|
| 223 |
+
factor = 1
|
| 224 |
+
root_path = "../InsDet/Scenes"
|
| 225 |
+
test_path = "../database/Data/test_" + str(factor) + '_' + str(level)
|
| 226 |
+
if not os.path.exists(os.path.join(test_path, 'images')):
|
| 227 |
+
os.makedirs(os.path.join(test_path, 'images'))
|
| 228 |
+
if not os.path.exists(os.path.join(test_path, 'annotations')):
|
| 229 |
+
os.makedirs(os.path.join(test_path, 'annotations'))
|
| 230 |
+
|
| 231 |
+
if level == 'all':
|
| 232 |
+
image_paths = sorted([p for p in glob.glob(os.path.join(root_path, '*/*/*'))
|
| 233 |
+
if re.search('/*\.(jpg|jpeg|png|gif|bmp)', str(p))])
|
| 234 |
+
anno_paths = sorted([p for p in glob.glob(os.path.join(root_path, '*/*/*'))
|
| 235 |
+
if re.search('/*\.xml', str(p))])
|
| 236 |
+
else:
|
| 237 |
+
image_paths = sorted([p for p in glob.glob(os.path.join(root_path, level, '*/*'))
|
| 238 |
+
if re.search('/*\.(jpg|jpeg|png|gif|bmp)', str(p))])
|
| 239 |
+
anno_paths = sorted([p for p in glob.glob(os.path.join(root_path, level, '*/*'))
|
| 240 |
+
if re.search('/*\.xml', str(p))])
|
| 241 |
+
|
| 242 |
+
for i, file_path in enumerate(zip(image_paths, anno_paths)):
|
| 243 |
+
file_name = 'test_' + '%03d' % i
|
| 244 |
+
img_extend = os.path.splitext(file_path[0])[-1] # extend for image file
|
| 245 |
+
anno_extend = os.path.splitext(file_path[1])[-1] # extend for image file
|
| 246 |
+
|
| 247 |
+
shutil.copyfile(file_path[0], os.path.join(test_path, 'images', file_name + img_extend))
|
| 248 |
+
shutil.copyfile(file_path[1], os.path.join(test_path, 'annotations', file_name + anno_extend))
|
| 249 |
+
|
| 250 |
+
getCOCOjson(os.path.join(test_path),
|
| 251 |
+
os.path.join(test_path, "instances_test_" + str(factor) + '_' + str(level) + ".json"),
|
| 252 |
+
factor=1/factor, flag='test')
|
| 253 |
+
# height = 6144
|
| 254 |
+
# width = 8192
|
| 255 |
+
# minify(os.path.join(test_path, 'images'), os.path.join(test_path, 'test'),
|
| 256 |
+
# factors=[], resolutions=[[int(height / factor), int(width / factor)]], extend='jpg')
|
| 257 |
+
|
| 258 |
+
|
utils/visualizer.py
ADDED
|
@@ -0,0 +1,1283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
| 2 |
+
import colorsys
|
| 3 |
+
import logging
|
| 4 |
+
import math
|
| 5 |
+
import numpy as np
|
| 6 |
+
from enum import Enum, unique
|
| 7 |
+
import cv2
|
| 8 |
+
import matplotlib as mpl
|
| 9 |
+
import matplotlib.colors as mplc
|
| 10 |
+
import matplotlib.figure as mplfigure
|
| 11 |
+
import pycocotools.mask as mask_util
|
| 12 |
+
import torch
|
| 13 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
| 14 |
+
from PIL import Image
|
| 15 |
+
|
| 16 |
+
from detectron2.data import MetadataCatalog
|
| 17 |
+
from detectron2.structures import BitMasks, Boxes, BoxMode, Keypoints, PolygonMasks, RotatedBoxes
|
| 18 |
+
from detectron2.utils.file_io import PathManager
|
| 19 |
+
|
| 20 |
+
from detectron2.utils.colormap import random_color
|
| 21 |
+
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
__all__ = ["ColorMode", "VisImage", "Visualizer"]
|
| 25 |
+
|
| 26 |
+
_SMALL_OBJECT_AREA_THRESH = 1000
|
| 27 |
+
_LARGE_MASK_AREA_THRESH = 120000
|
| 28 |
+
_OFF_WHITE = (1.0, 1.0, 240.0 / 255)
|
| 29 |
+
_BLACK = (0, 0, 0)
|
| 30 |
+
_RED = (1.0, 0, 0)
|
| 31 |
+
|
| 32 |
+
_KEYPOINT_THRESHOLD = 0.05
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@unique
|
| 36 |
+
class ColorMode(Enum):
|
| 37 |
+
"""
|
| 38 |
+
Enum of different color modes to use for instance visualizations.
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
IMAGE = 0
|
| 42 |
+
"""
|
| 43 |
+
Picks a random color for every instance and overlay segmentations with low opacity.
|
| 44 |
+
"""
|
| 45 |
+
SEGMENTATION = 1
|
| 46 |
+
"""
|
| 47 |
+
Let instances of the same category have similar colors
|
| 48 |
+
(from metadata.thing_colors), and overlay them with
|
| 49 |
+
high opacity. This provides more attention on the quality of segmentation.
|
| 50 |
+
"""
|
| 51 |
+
IMAGE_BW = 2
|
| 52 |
+
"""
|
| 53 |
+
Same as IMAGE, but convert all areas without masks to gray-scale.
|
| 54 |
+
Only available for drawing per-instance mask predictions.
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class GenericMask:
|
| 59 |
+
"""
|
| 60 |
+
Attribute:
|
| 61 |
+
polygons (list[ndarray]): list[ndarray]: polygons for this mask.
|
| 62 |
+
Each ndarray has format [x, y, x, y, ...]
|
| 63 |
+
mask (ndarray): a binary mask
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
def __init__(self, mask_or_polygons, height, width):
|
| 67 |
+
self._mask = self._polygons = self._has_holes = None
|
| 68 |
+
self.height = height
|
| 69 |
+
self.width = width
|
| 70 |
+
|
| 71 |
+
m = mask_or_polygons
|
| 72 |
+
if isinstance(m, dict):
|
| 73 |
+
# RLEs
|
| 74 |
+
assert "counts" in m and "size" in m
|
| 75 |
+
if isinstance(m["counts"], list): # uncompressed RLEs
|
| 76 |
+
h, w = m["size"]
|
| 77 |
+
assert h == height and w == width
|
| 78 |
+
m = mask_util.frPyObjects(m, h, w)
|
| 79 |
+
self._mask = mask_util.decode(m)[:, :]
|
| 80 |
+
return
|
| 81 |
+
|
| 82 |
+
if isinstance(m, list): # list[ndarray]
|
| 83 |
+
self._polygons = [np.asarray(x).reshape(-1) for x in m]
|
| 84 |
+
return
|
| 85 |
+
|
| 86 |
+
if isinstance(m, np.ndarray): # assumed to be a binary mask
|
| 87 |
+
assert m.shape[1] != 2, m.shape
|
| 88 |
+
assert m.shape == (
|
| 89 |
+
height,
|
| 90 |
+
width,
|
| 91 |
+
), f"mask shape: {m.shape}, target dims: {height}, {width}"
|
| 92 |
+
self._mask = m.astype("uint8")
|
| 93 |
+
return
|
| 94 |
+
|
| 95 |
+
raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m)))
|
| 96 |
+
|
| 97 |
+
@property
|
| 98 |
+
def mask(self):
|
| 99 |
+
if self._mask is None:
|
| 100 |
+
self._mask = self.polygons_to_mask(self._polygons)
|
| 101 |
+
return self._mask
|
| 102 |
+
|
| 103 |
+
@property
|
| 104 |
+
def polygons(self):
|
| 105 |
+
if self._polygons is None:
|
| 106 |
+
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
|
| 107 |
+
return self._polygons
|
| 108 |
+
|
| 109 |
+
@property
|
| 110 |
+
def has_holes(self):
|
| 111 |
+
if self._has_holes is None:
|
| 112 |
+
if self._mask is not None:
|
| 113 |
+
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
|
| 114 |
+
else:
|
| 115 |
+
self._has_holes = False # if original format is polygon, does not have holes
|
| 116 |
+
return self._has_holes
|
| 117 |
+
|
| 118 |
+
def mask_to_polygons(self, mask):
|
| 119 |
+
# cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level
|
| 120 |
+
# hierarchy. External contours (boundary) of the object are placed in hierarchy-1.
|
| 121 |
+
# Internal contours (holes) are placed in hierarchy-2.
|
| 122 |
+
# cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours.
|
| 123 |
+
mask = np.ascontiguousarray(mask) # some versions of cv2 does not support incontiguous arr
|
| 124 |
+
res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
|
| 125 |
+
hierarchy = res[-1]
|
| 126 |
+
if hierarchy is None: # empty mask
|
| 127 |
+
return [], False
|
| 128 |
+
has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
|
| 129 |
+
res = res[-2]
|
| 130 |
+
res = [x.flatten() for x in res]
|
| 131 |
+
# These coordinates from OpenCV are integers in range [0, W-1 or H-1].
|
| 132 |
+
# We add 0.5 to turn them into real-value coordinate space. A better solution
|
| 133 |
+
# would be to first +0.5 and then dilate the returned polygon by 0.5.
|
| 134 |
+
res = [x + 0.5 for x in res if len(x) >= 6]
|
| 135 |
+
return res, has_holes
|
| 136 |
+
|
| 137 |
+
def polygons_to_mask(self, polygons):
|
| 138 |
+
rle = mask_util.frPyObjects(polygons, self.height, self.width)
|
| 139 |
+
rle = mask_util.merge(rle)
|
| 140 |
+
return mask_util.decode(rle)[:, :]
|
| 141 |
+
|
| 142 |
+
def area(self):
|
| 143 |
+
return self.mask.sum()
|
| 144 |
+
|
| 145 |
+
def bbox(self):
|
| 146 |
+
p = mask_util.frPyObjects(self.polygons, self.height, self.width)
|
| 147 |
+
p = mask_util.merge(p)
|
| 148 |
+
bbox = mask_util.toBbox(p)
|
| 149 |
+
bbox[2] += bbox[0]
|
| 150 |
+
bbox[3] += bbox[1]
|
| 151 |
+
return bbox
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
class _PanopticPrediction:
|
| 155 |
+
"""
|
| 156 |
+
Unify different panoptic annotation/prediction formats
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
def __init__(self, panoptic_seg, segments_info, metadata=None):
|
| 160 |
+
if segments_info is None:
|
| 161 |
+
assert metadata is not None
|
| 162 |
+
# If "segments_info" is None, we assume "panoptic_img" is a
|
| 163 |
+
# H*W int32 image storing the panoptic_id in the format of
|
| 164 |
+
# category_id * label_divisor + instance_id. We reserve -1 for
|
| 165 |
+
# VOID label.
|
| 166 |
+
label_divisor = metadata.label_divisor
|
| 167 |
+
segments_info = []
|
| 168 |
+
for panoptic_label in np.unique(panoptic_seg.numpy()):
|
| 169 |
+
if panoptic_label == -1:
|
| 170 |
+
# VOID region.
|
| 171 |
+
continue
|
| 172 |
+
pred_class = panoptic_label // label_divisor
|
| 173 |
+
isthing = pred_class in metadata.thing_dataset_id_to_contiguous_id.values()
|
| 174 |
+
segments_info.append(
|
| 175 |
+
{
|
| 176 |
+
"id": int(panoptic_label),
|
| 177 |
+
"category_id": int(pred_class),
|
| 178 |
+
"isthing": bool(isthing),
|
| 179 |
+
}
|
| 180 |
+
)
|
| 181 |
+
del metadata
|
| 182 |
+
|
| 183 |
+
self._seg = panoptic_seg
|
| 184 |
+
|
| 185 |
+
self._sinfo = {s["id"]: s for s in segments_info} # seg id -> seg info
|
| 186 |
+
segment_ids, areas = torch.unique(panoptic_seg, sorted=True, return_counts=True)
|
| 187 |
+
areas = areas.numpy()
|
| 188 |
+
sorted_idxs = np.argsort(-areas)
|
| 189 |
+
self._seg_ids, self._seg_areas = segment_ids[sorted_idxs], areas[sorted_idxs]
|
| 190 |
+
self._seg_ids = self._seg_ids.tolist()
|
| 191 |
+
for sid, area in zip(self._seg_ids, self._seg_areas):
|
| 192 |
+
if sid in self._sinfo:
|
| 193 |
+
self._sinfo[sid]["area"] = float(area)
|
| 194 |
+
|
| 195 |
+
def non_empty_mask(self):
|
| 196 |
+
"""
|
| 197 |
+
Returns:
|
| 198 |
+
(H, W) array, a mask for all pixels that have a prediction
|
| 199 |
+
"""
|
| 200 |
+
empty_ids = []
|
| 201 |
+
for id in self._seg_ids:
|
| 202 |
+
if id not in self._sinfo:
|
| 203 |
+
empty_ids.append(id)
|
| 204 |
+
if len(empty_ids) == 0:
|
| 205 |
+
return np.zeros(self._seg.shape, dtype=np.uint8)
|
| 206 |
+
assert (
|
| 207 |
+
len(empty_ids) == 1
|
| 208 |
+
), ">1 ids corresponds to no labels. This is currently not supported"
|
| 209 |
+
return (self._seg != empty_ids[0]).numpy().astype(bool)
|
| 210 |
+
|
| 211 |
+
def semantic_masks(self):
|
| 212 |
+
for sid in self._seg_ids:
|
| 213 |
+
sinfo = self._sinfo.get(sid)
|
| 214 |
+
if sinfo is None or sinfo["isthing"]:
|
| 215 |
+
# Some pixels (e.g. id 0 in PanopticFPN) have no instance or semantic predictions.
|
| 216 |
+
continue
|
| 217 |
+
yield (self._seg == sid).numpy().astype(bool), sinfo
|
| 218 |
+
|
| 219 |
+
def instance_masks(self):
|
| 220 |
+
for sid in self._seg_ids:
|
| 221 |
+
sinfo = self._sinfo.get(sid)
|
| 222 |
+
if sinfo is None or not sinfo["isthing"]:
|
| 223 |
+
continue
|
| 224 |
+
mask = (self._seg == sid).numpy().astype(bool)
|
| 225 |
+
if mask.sum() > 0:
|
| 226 |
+
yield mask, sinfo
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def _create_text_labels(classes, scores, class_names, is_crowd=None):
|
| 230 |
+
"""
|
| 231 |
+
Args:
|
| 232 |
+
classes (list[int] or None):
|
| 233 |
+
scores (list[float] or None):
|
| 234 |
+
class_names (list[str] or None):
|
| 235 |
+
is_crowd (list[bool] or None):
|
| 236 |
+
|
| 237 |
+
Returns:
|
| 238 |
+
list[str] or None
|
| 239 |
+
"""
|
| 240 |
+
labels = None
|
| 241 |
+
if classes is not None:
|
| 242 |
+
if class_names is not None and len(class_names) > 0:
|
| 243 |
+
labels = [class_names[i] for i in classes]
|
| 244 |
+
else:
|
| 245 |
+
labels = [str(i) for i in classes]
|
| 246 |
+
if scores is not None:
|
| 247 |
+
if labels is None:
|
| 248 |
+
# labels = ["{:.0f}%".format(s * 100) for s in scores]
|
| 249 |
+
labels = ["{:.2f}%".format(s) for s in scores]
|
| 250 |
+
else:
|
| 251 |
+
# labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)]
|
| 252 |
+
labels = ["{} {:.2f}".format(l, s) for l, s in zip(labels, scores)]
|
| 253 |
+
if labels is not None and is_crowd is not None:
|
| 254 |
+
labels = [l + ("|crowd" if crowd else "") for l, crowd in zip(labels, is_crowd)]
|
| 255 |
+
return labels
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
class VisImage:
|
| 259 |
+
def __init__(self, img, scale=1.0):
|
| 260 |
+
"""
|
| 261 |
+
Args:
|
| 262 |
+
img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255].
|
| 263 |
+
scale (float): scale the input image
|
| 264 |
+
"""
|
| 265 |
+
self.img = img
|
| 266 |
+
self.scale = scale
|
| 267 |
+
self.width, self.height = img.shape[1], img.shape[0]
|
| 268 |
+
self._setup_figure(img)
|
| 269 |
+
|
| 270 |
+
def _setup_figure(self, img):
|
| 271 |
+
"""
|
| 272 |
+
Args:
|
| 273 |
+
Same as in :meth:`__init__()`.
|
| 274 |
+
|
| 275 |
+
Returns:
|
| 276 |
+
fig (matplotlib.pyplot.figure): top level container for all the image plot elements.
|
| 277 |
+
ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system.
|
| 278 |
+
"""
|
| 279 |
+
fig = mplfigure.Figure(frameon=False)
|
| 280 |
+
self.dpi = fig.get_dpi()
|
| 281 |
+
# add a small 1e-2 to avoid precision lost due to matplotlib's truncation
|
| 282 |
+
# (https://github.com/matplotlib/matplotlib/issues/15363)
|
| 283 |
+
fig.set_size_inches(
|
| 284 |
+
(self.width * self.scale + 1e-2) / self.dpi,
|
| 285 |
+
(self.height * self.scale + 1e-2) / self.dpi,
|
| 286 |
+
)
|
| 287 |
+
self.canvas = FigureCanvasAgg(fig)
|
| 288 |
+
# self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
|
| 289 |
+
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
|
| 290 |
+
ax.axis("off")
|
| 291 |
+
self.fig = fig
|
| 292 |
+
self.ax = ax
|
| 293 |
+
self.reset_image(img)
|
| 294 |
+
|
| 295 |
+
def reset_image(self, img):
|
| 296 |
+
"""
|
| 297 |
+
Args:
|
| 298 |
+
img: same as in __init__
|
| 299 |
+
"""
|
| 300 |
+
img = img.astype("uint8")
|
| 301 |
+
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
|
| 302 |
+
|
| 303 |
+
def save(self, filepath):
|
| 304 |
+
"""
|
| 305 |
+
Args:
|
| 306 |
+
filepath (str): a string that contains the absolute path, including the file name, where
|
| 307 |
+
the visualized image will be saved.
|
| 308 |
+
"""
|
| 309 |
+
self.fig.savefig(filepath)
|
| 310 |
+
|
| 311 |
+
def get_image(self):
|
| 312 |
+
"""
|
| 313 |
+
Returns:
|
| 314 |
+
ndarray:
|
| 315 |
+
the visualized image of shape (H, W, 3) (RGB) in uint8 type.
|
| 316 |
+
The shape is scaled w.r.t the input image using the given `scale` argument.
|
| 317 |
+
"""
|
| 318 |
+
canvas = self.canvas
|
| 319 |
+
s, (width, height) = canvas.print_to_buffer()
|
| 320 |
+
# buf = io.BytesIO() # works for cairo backend
|
| 321 |
+
# canvas.print_rgba(buf)
|
| 322 |
+
# width, height = self.width, self.height
|
| 323 |
+
# s = buf.getvalue()
|
| 324 |
+
|
| 325 |
+
buffer = np.frombuffer(s, dtype="uint8")
|
| 326 |
+
|
| 327 |
+
img_rgba = buffer.reshape(height, width, 4)
|
| 328 |
+
rgb, alpha = np.split(img_rgba, [3], axis=2)
|
| 329 |
+
return rgb.astype("uint8")
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
class Visualizer:
|
| 333 |
+
"""
|
| 334 |
+
Visualizer that draws data about detection/segmentation on images.
|
| 335 |
+
|
| 336 |
+
It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}`
|
| 337 |
+
that draw primitive objects to images, as well as high-level wrappers like
|
| 338 |
+
`draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}`
|
| 339 |
+
that draw composite data in some pre-defined style.
|
| 340 |
+
|
| 341 |
+
Note that the exact visualization style for the high-level wrappers are subject to change.
|
| 342 |
+
Style such as color, opacity, label contents, visibility of labels, or even the visibility
|
| 343 |
+
of objects themselves (e.g. when the object is too small) may change according
|
| 344 |
+
to different heuristics, as long as the results still look visually reasonable.
|
| 345 |
+
|
| 346 |
+
To obtain a consistent style, you can implement custom drawing functions with the
|
| 347 |
+
abovementioned primitive methods instead. If you need more customized visualization
|
| 348 |
+
styles, you can process the data yourself following their format documented in
|
| 349 |
+
tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not
|
| 350 |
+
intend to satisfy everyone's preference on drawing styles.
|
| 351 |
+
|
| 352 |
+
This visualizer focuses on high rendering quality rather than performance. It is not
|
| 353 |
+
designed to be used for real-time applications.
|
| 354 |
+
"""
|
| 355 |
+
|
| 356 |
+
# TODO implement a fast, rasterized version using OpenCV
|
| 357 |
+
|
| 358 |
+
def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE):
|
| 359 |
+
"""
|
| 360 |
+
Args:
|
| 361 |
+
img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
|
| 362 |
+
the height and width of the image respectively. C is the number of
|
| 363 |
+
color channels. The image is required to be in RGB format since that
|
| 364 |
+
is a requirement of the Matplotlib library. The image is also expected
|
| 365 |
+
to be in the range [0, 255].
|
| 366 |
+
metadata (Metadata): dataset metadata (e.g. class names and colors)
|
| 367 |
+
instance_mode (ColorMode): defines one of the pre-defined style for drawing
|
| 368 |
+
instances on an image.
|
| 369 |
+
"""
|
| 370 |
+
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
|
| 371 |
+
if metadata is None:
|
| 372 |
+
metadata = MetadataCatalog.get("__nonexist__")
|
| 373 |
+
self.metadata = metadata
|
| 374 |
+
self.output = VisImage(self.img, scale=scale)
|
| 375 |
+
self.cpu_device = torch.device("cpu")
|
| 376 |
+
|
| 377 |
+
# too small texts are useless, therefore clamp to 9
|
| 378 |
+
self._default_font_size = max(
|
| 379 |
+
np.sqrt(self.output.height * self.output.width) // 90, 10 // scale
|
| 380 |
+
)
|
| 381 |
+
self._instance_mode = instance_mode
|
| 382 |
+
self.keypoint_threshold = _KEYPOINT_THRESHOLD
|
| 383 |
+
|
| 384 |
+
def draw_instance_predictions(self, predictions, keep_ids):
|
| 385 |
+
"""
|
| 386 |
+
Draw instance-level prediction results on an image.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
predictions (Instances): the output of an instance detection/segmentation
|
| 390 |
+
model. Following fields will be used to draw:
|
| 391 |
+
"pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
|
| 392 |
+
|
| 393 |
+
Returns:
|
| 394 |
+
output (VisImage): image object with visualizations.
|
| 395 |
+
"""
|
| 396 |
+
boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None
|
| 397 |
+
scores = predictions.scores if predictions.has("scores") else None
|
| 398 |
+
classes = predictions.pred_classes.tolist() if predictions.has("pred_classes") else None
|
| 399 |
+
# labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None))
|
| 400 |
+
labels = _create_text_labels(classes, scores, None)
|
| 401 |
+
keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None
|
| 402 |
+
|
| 403 |
+
if predictions.has("pred_masks"):
|
| 404 |
+
masks = np.asarray(predictions.pred_masks)
|
| 405 |
+
masks = [GenericMask(x, self.output.height, self.output.width) for x in masks]
|
| 406 |
+
else:
|
| 407 |
+
masks = None
|
| 408 |
+
|
| 409 |
+
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
|
| 410 |
+
colors = [[x / 255 for x in self.metadata.thing_colors[c]] for c in classes
|
| 411 |
+
]
|
| 412 |
+
alpha = 1.0
|
| 413 |
+
else:
|
| 414 |
+
colors = None
|
| 415 |
+
alpha = 0.5
|
| 416 |
+
|
| 417 |
+
if self._instance_mode == ColorMode.IMAGE_BW:
|
| 418 |
+
self.output.reset_image(
|
| 419 |
+
self._create_grayscale_image(
|
| 420 |
+
(predictions.pred_masks.any(dim=0) > 0).numpy()
|
| 421 |
+
if predictions.has("pred_masks")
|
| 422 |
+
else None
|
| 423 |
+
)
|
| 424 |
+
)
|
| 425 |
+
alpha = 0.3
|
| 426 |
+
|
| 427 |
+
# print(len(keep_ids), len(boxes))
|
| 428 |
+
# labels = None
|
| 429 |
+
self.overlay_instances(
|
| 430 |
+
masks=masks,
|
| 431 |
+
boxes=boxes,
|
| 432 |
+
labels=labels,
|
| 433 |
+
keypoints=keypoints,
|
| 434 |
+
assigned_colors=colors,
|
| 435 |
+
alpha=1.0,
|
| 436 |
+
keep_ids=keep_ids,
|
| 437 |
+
)
|
| 438 |
+
return self.output
|
| 439 |
+
|
| 440 |
+
def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.8):
|
| 441 |
+
"""
|
| 442 |
+
Draw semantic segmentation predictions/labels.
|
| 443 |
+
|
| 444 |
+
Args:
|
| 445 |
+
sem_seg (Tensor or ndarray): the segmentation of shape (H, W).
|
| 446 |
+
Each value is the integer label of the pixel.
|
| 447 |
+
area_threshold (int): segments with less than `area_threshold` are not drawn.
|
| 448 |
+
alpha (float): the larger it is, the more opaque the segmentations are.
|
| 449 |
+
|
| 450 |
+
Returns:
|
| 451 |
+
output (VisImage): image object with visualizations.
|
| 452 |
+
"""
|
| 453 |
+
if isinstance(sem_seg, torch.Tensor):
|
| 454 |
+
sem_seg = sem_seg.numpy()
|
| 455 |
+
labels, areas = np.unique(sem_seg, return_counts=True)
|
| 456 |
+
sorted_idxs = np.argsort(-areas).tolist()
|
| 457 |
+
labels = labels[sorted_idxs]
|
| 458 |
+
for label in filter(lambda l: l < len(self.metadata.stuff_classes), labels):
|
| 459 |
+
try:
|
| 460 |
+
mask_color = [x / 255 for x in self.metadata.stuff_colors[label]]
|
| 461 |
+
except (AttributeError, IndexError):
|
| 462 |
+
mask_color = None
|
| 463 |
+
|
| 464 |
+
binary_mask = (sem_seg == label).astype(np.uint8)
|
| 465 |
+
text = self.metadata.stuff_classes[label]
|
| 466 |
+
self.draw_binary_mask(
|
| 467 |
+
binary_mask,
|
| 468 |
+
color=mask_color,
|
| 469 |
+
edge_color=_OFF_WHITE,
|
| 470 |
+
text=text,
|
| 471 |
+
alpha=alpha,
|
| 472 |
+
area_threshold=area_threshold,
|
| 473 |
+
)
|
| 474 |
+
return self.output
|
| 475 |
+
|
| 476 |
+
def draw_panoptic_seg(self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7):
|
| 477 |
+
"""
|
| 478 |
+
Draw panoptic prediction annotations or results.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each
|
| 482 |
+
segment.
|
| 483 |
+
segments_info (list[dict] or None): Describe each segment in `panoptic_seg`.
|
| 484 |
+
If it is a ``list[dict]``, each dict contains keys "id", "category_id".
|
| 485 |
+
If None, category id of each pixel is computed by
|
| 486 |
+
``pixel // metadata.label_divisor``.
|
| 487 |
+
area_threshold (int): stuff segments with less than `area_threshold` are not drawn.
|
| 488 |
+
|
| 489 |
+
Returns:
|
| 490 |
+
output (VisImage): image object with visualizations.
|
| 491 |
+
"""
|
| 492 |
+
pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata)
|
| 493 |
+
|
| 494 |
+
if self._instance_mode == ColorMode.IMAGE_BW:
|
| 495 |
+
self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask()))
|
| 496 |
+
|
| 497 |
+
# draw mask for all semantic segments first i.e. "stuff"
|
| 498 |
+
for mask, sinfo in pred.semantic_masks():
|
| 499 |
+
category_idx = sinfo["category_id"]
|
| 500 |
+
try:
|
| 501 |
+
mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]]
|
| 502 |
+
except AttributeError:
|
| 503 |
+
mask_color = None
|
| 504 |
+
|
| 505 |
+
text = self.metadata.stuff_classes[category_idx]
|
| 506 |
+
self.draw_binary_mask(
|
| 507 |
+
mask,
|
| 508 |
+
color=mask_color,
|
| 509 |
+
edge_color=_OFF_WHITE,
|
| 510 |
+
text=text,
|
| 511 |
+
alpha=alpha,
|
| 512 |
+
area_threshold=area_threshold,
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
# draw mask for all instances second
|
| 516 |
+
all_instances = list(pred.instance_masks())
|
| 517 |
+
if len(all_instances) == 0:
|
| 518 |
+
return self.output
|
| 519 |
+
masks, sinfo = list(zip(*all_instances))
|
| 520 |
+
category_ids = [x["category_id"] for x in sinfo]
|
| 521 |
+
|
| 522 |
+
try:
|
| 523 |
+
scores = [x["score"] for x in sinfo]
|
| 524 |
+
except KeyError:
|
| 525 |
+
scores = None
|
| 526 |
+
labels = _create_text_labels(
|
| 527 |
+
category_ids, scores, self.metadata.thing_classes, [x.get("iscrowd", 0) for x in sinfo]
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
try:
|
| 531 |
+
colors = [
|
| 532 |
+
self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids
|
| 533 |
+
]
|
| 534 |
+
except AttributeError:
|
| 535 |
+
colors = None
|
| 536 |
+
self.overlay_instances(masks=masks, labels=labels, assigned_colors=colors, alpha=alpha)
|
| 537 |
+
|
| 538 |
+
return self.output
|
| 539 |
+
|
| 540 |
+
draw_panoptic_seg_predictions = draw_panoptic_seg # backward compatibility
|
| 541 |
+
|
| 542 |
+
def draw_dataset_dict(self, dic, keep_ids=[]):
|
| 543 |
+
"""
|
| 544 |
+
Draw annotations/segmentaions in Detectron2 Dataset format.
|
| 545 |
+
|
| 546 |
+
Args:
|
| 547 |
+
dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format.
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
output (VisImage): image object with visualizations.
|
| 551 |
+
"""
|
| 552 |
+
annos = dic.get("annotations", None)
|
| 553 |
+
if annos:
|
| 554 |
+
if "segmentation" in annos[0]:
|
| 555 |
+
masks = [x["segmentation"] for x in annos]
|
| 556 |
+
else:
|
| 557 |
+
masks = None
|
| 558 |
+
if "keypoints" in annos[0]:
|
| 559 |
+
keypts = [x["keypoints"] for x in annos]
|
| 560 |
+
keypts = np.array(keypts).reshape(len(annos), -1, 3)
|
| 561 |
+
else:
|
| 562 |
+
keypts = None
|
| 563 |
+
|
| 564 |
+
boxes = [
|
| 565 |
+
BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS)
|
| 566 |
+
if len(x["bbox"]) == 4
|
| 567 |
+
else x["bbox"]
|
| 568 |
+
for x in annos
|
| 569 |
+
]
|
| 570 |
+
|
| 571 |
+
colors = None
|
| 572 |
+
category_ids = [x["category_id"] for x in annos]
|
| 573 |
+
# if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
|
| 574 |
+
# colors = [
|
| 575 |
+
# self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids
|
| 576 |
+
# ]
|
| 577 |
+
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
|
| 578 |
+
colors = [[x / 255 for x in self.metadata.thing_colors[c]] for c in category_ids]
|
| 579 |
+
names = self.metadata.get("thing_classes", None)
|
| 580 |
+
labels = _create_text_labels(
|
| 581 |
+
category_ids,
|
| 582 |
+
scores=None,
|
| 583 |
+
class_names=None,
|
| 584 |
+
is_crowd=[x.get("iscrowd", 0) for x in annos],
|
| 585 |
+
)
|
| 586 |
+
# labels = None
|
| 587 |
+
self.overlay_instances(
|
| 588 |
+
labels=labels, boxes=boxes, masks=masks, keypoints=keypts, assigned_colors=colors,
|
| 589 |
+
alpha=1.0, keep_ids=keep_ids
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
sem_seg = dic.get("sem_seg", None)
|
| 593 |
+
if sem_seg is None and "sem_seg_file_name" in dic:
|
| 594 |
+
with PathManager.open(dic["sem_seg_file_name"], "rb") as f:
|
| 595 |
+
sem_seg = Image.open(f)
|
| 596 |
+
sem_seg = np.asarray(sem_seg, dtype="uint8")
|
| 597 |
+
if sem_seg is not None:
|
| 598 |
+
self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.5)
|
| 599 |
+
|
| 600 |
+
pan_seg = dic.get("pan_seg", None)
|
| 601 |
+
if pan_seg is None and "pan_seg_file_name" in dic:
|
| 602 |
+
with PathManager.open(dic["pan_seg_file_name"], "rb") as f:
|
| 603 |
+
pan_seg = Image.open(f)
|
| 604 |
+
pan_seg = np.asarray(pan_seg)
|
| 605 |
+
from panopticapi.utils import rgb2id
|
| 606 |
+
|
| 607 |
+
pan_seg = rgb2id(pan_seg)
|
| 608 |
+
if pan_seg is not None:
|
| 609 |
+
segments_info = dic["segments_info"]
|
| 610 |
+
pan_seg = torch.tensor(pan_seg)
|
| 611 |
+
self.draw_panoptic_seg(pan_seg, segments_info, area_threshold=0, alpha=0.5)
|
| 612 |
+
return self.output
|
| 613 |
+
|
| 614 |
+
def overlay_instances(
|
| 615 |
+
self,
|
| 616 |
+
*,
|
| 617 |
+
boxes=None,
|
| 618 |
+
labels=None,
|
| 619 |
+
masks=None,
|
| 620 |
+
keypoints=None,
|
| 621 |
+
assigned_colors=None,
|
| 622 |
+
alpha=1.0,
|
| 623 |
+
keep_ids=[]
|
| 624 |
+
):
|
| 625 |
+
"""
|
| 626 |
+
Args:
|
| 627 |
+
boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`,
|
| 628 |
+
or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image,
|
| 629 |
+
or a :class:`RotatedBoxes`,
|
| 630 |
+
or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format
|
| 631 |
+
for the N objects in a single image,
|
| 632 |
+
labels (list[str]): the text to be displayed for each instance.
|
| 633 |
+
masks (masks-like object): Supported types are:
|
| 634 |
+
|
| 635 |
+
* :class:`detectron2.structures.PolygonMasks`,
|
| 636 |
+
:class:`detectron2.structures.BitMasks`.
|
| 637 |
+
* list[list[ndarray]]: contains the segmentation masks for all objects in one image.
|
| 638 |
+
The first level of the list corresponds to individual instances. The second
|
| 639 |
+
level to all the polygon that compose the instance, and the third level
|
| 640 |
+
to the polygon coordinates. The third level should have the format of
|
| 641 |
+
[x0, y0, x1, y1, ..., xn, yn] (n >= 3).
|
| 642 |
+
* list[ndarray]: each ndarray is a binary mask of shape (H, W).
|
| 643 |
+
* list[dict]: each dict is a COCO-style RLE.
|
| 644 |
+
keypoints (Keypoint or array like): an array-like object of shape (N, K, 3),
|
| 645 |
+
where the N is the number of instances and K is the number of keypoints.
|
| 646 |
+
The last dimension corresponds to (x, y, visibility or score).
|
| 647 |
+
assigned_colors (list[matplotlib.colors]): a list of colors, where each color
|
| 648 |
+
corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
|
| 649 |
+
for full list of formats that the colors are accepted in.
|
| 650 |
+
Returns:
|
| 651 |
+
output (VisImage): image object with visualizations.
|
| 652 |
+
"""
|
| 653 |
+
num_instances = 0
|
| 654 |
+
if boxes is not None:
|
| 655 |
+
boxes = self._convert_boxes(boxes)
|
| 656 |
+
num_instances = len(boxes)
|
| 657 |
+
if masks is not None:
|
| 658 |
+
masks = self._convert_masks(masks)
|
| 659 |
+
if num_instances:
|
| 660 |
+
assert len(masks) == num_instances
|
| 661 |
+
else:
|
| 662 |
+
num_instances = len(masks)
|
| 663 |
+
if keypoints is not None:
|
| 664 |
+
if num_instances:
|
| 665 |
+
assert len(keypoints) == num_instances
|
| 666 |
+
else:
|
| 667 |
+
num_instances = len(keypoints)
|
| 668 |
+
keypoints = self._convert_keypoints(keypoints)
|
| 669 |
+
if labels is not None:
|
| 670 |
+
assert len(labels) == num_instances
|
| 671 |
+
if assigned_colors is None:
|
| 672 |
+
assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
|
| 673 |
+
if num_instances == 0:
|
| 674 |
+
return self.output
|
| 675 |
+
if boxes is not None and boxes.shape[1] == 5:
|
| 676 |
+
return self.overlay_rotated_instances(
|
| 677 |
+
boxes=boxes, labels=labels, assigned_colors=assigned_colors
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
# Display in largest to smallest order to reduce occlusion.
|
| 681 |
+
areas = None
|
| 682 |
+
if boxes is not None:
|
| 683 |
+
areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
|
| 684 |
+
elif masks is not None:
|
| 685 |
+
areas = np.asarray([x.area() for x in masks])
|
| 686 |
+
|
| 687 |
+
if areas is not None:
|
| 688 |
+
sorted_idxs = np.argsort(-areas).tolist()
|
| 689 |
+
# Re-order overlapped instances in descending order.
|
| 690 |
+
boxes = boxes[sorted_idxs] if boxes is not None else None
|
| 691 |
+
labels = [labels[k] for k in sorted_idxs] if labels is not None else None
|
| 692 |
+
masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None
|
| 693 |
+
assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
|
| 694 |
+
keypoints = keypoints[sorted_idxs] if keypoints is not None else None
|
| 695 |
+
|
| 696 |
+
if len(keep_ids) == 0:
|
| 697 |
+
keep_ids = [*range(num_instances)]
|
| 698 |
+
|
| 699 |
+
for i in range(num_instances):
|
| 700 |
+
if sorted_idxs[i] not in keep_ids:
|
| 701 |
+
print('\t', sorted_idxs[i])
|
| 702 |
+
continue
|
| 703 |
+
color = assigned_colors[i]
|
| 704 |
+
if boxes is not None:
|
| 705 |
+
self.draw_box(boxes[i], edge_color=color)
|
| 706 |
+
|
| 707 |
+
if masks is not None:
|
| 708 |
+
for segment in masks[i].polygons:
|
| 709 |
+
self.draw_polygon(segment.reshape(-1, 2), color, alpha=alpha)
|
| 710 |
+
|
| 711 |
+
if labels is not None:
|
| 712 |
+
# first get a box
|
| 713 |
+
if boxes is not None:
|
| 714 |
+
x0, y0, x1, y1 = boxes[i]
|
| 715 |
+
text_pos = (x0-10, y0-30) # if drawing boxes, put text on the box corner.
|
| 716 |
+
horiz_align = "left"
|
| 717 |
+
elif masks is not None:
|
| 718 |
+
# skip small mask without polygon
|
| 719 |
+
if len(masks[i].polygons) == 0:
|
| 720 |
+
continue
|
| 721 |
+
|
| 722 |
+
x0, y0, x1, y1 = masks[i].bbox()
|
| 723 |
+
|
| 724 |
+
# draw text in the center (defined by median) when box is not drawn
|
| 725 |
+
# median is less sensitive to outliers.
|
| 726 |
+
text_pos = np.median(masks[i].mask.nonzero(), axis=1)[::-1]
|
| 727 |
+
horiz_align = "center"
|
| 728 |
+
else:
|
| 729 |
+
continue # drawing the box confidence for keypoints isn't very useful.
|
| 730 |
+
# for small objects, draw text at the side to avoid occlusion
|
| 731 |
+
instance_area = (y1 - y0) * (x1 - x0)
|
| 732 |
+
if (
|
| 733 |
+
instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale
|
| 734 |
+
or y1 - y0 < 40 * self.output.scale
|
| 735 |
+
):
|
| 736 |
+
if y1 >= self.output.height - 5:
|
| 737 |
+
text_pos = (x1, y0)
|
| 738 |
+
else:
|
| 739 |
+
text_pos = (x0, y1)
|
| 740 |
+
|
| 741 |
+
height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width)
|
| 742 |
+
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
|
| 743 |
+
# font_size = (
|
| 744 |
+
# np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
|
| 745 |
+
# * 0.5
|
| 746 |
+
# * self._default_font_size
|
| 747 |
+
# )
|
| 748 |
+
font_size = 18
|
| 749 |
+
self.draw_text(
|
| 750 |
+
labels[i],
|
| 751 |
+
text_pos,
|
| 752 |
+
color=lighter_color,
|
| 753 |
+
horizontal_alignment=horiz_align,
|
| 754 |
+
font_size=font_size,
|
| 755 |
+
)
|
| 756 |
+
|
| 757 |
+
# draw keypoints
|
| 758 |
+
if keypoints is not None:
|
| 759 |
+
for keypoints_per_instance in keypoints:
|
| 760 |
+
self.draw_and_connect_keypoints(keypoints_per_instance)
|
| 761 |
+
|
| 762 |
+
return self.output
|
| 763 |
+
|
| 764 |
+
def overlay_rotated_instances(self, boxes=None, labels=None, assigned_colors=None):
|
| 765 |
+
"""
|
| 766 |
+
Args:
|
| 767 |
+
boxes (ndarray): an Nx5 numpy array of
|
| 768 |
+
(x_center, y_center, width, height, angle_degrees) format
|
| 769 |
+
for the N objects in a single image.
|
| 770 |
+
labels (list[str]): the text to be displayed for each instance.
|
| 771 |
+
assigned_colors (list[matplotlib.colors]): a list of colors, where each color
|
| 772 |
+
corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
|
| 773 |
+
for full list of formats that the colors are accepted in.
|
| 774 |
+
|
| 775 |
+
Returns:
|
| 776 |
+
output (VisImage): image object with visualizations.
|
| 777 |
+
"""
|
| 778 |
+
num_instances = len(boxes)
|
| 779 |
+
|
| 780 |
+
if assigned_colors is None:
|
| 781 |
+
assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
|
| 782 |
+
if num_instances == 0:
|
| 783 |
+
return self.output
|
| 784 |
+
|
| 785 |
+
# Display in largest to smallest order to reduce occlusion.
|
| 786 |
+
if boxes is not None:
|
| 787 |
+
areas = boxes[:, 2] * boxes[:, 3]
|
| 788 |
+
|
| 789 |
+
sorted_idxs = np.argsort(-areas).tolist()
|
| 790 |
+
# Re-order overlapped instances in descending order.
|
| 791 |
+
boxes = boxes[sorted_idxs]
|
| 792 |
+
labels = [labels[k] for k in sorted_idxs] if labels is not None else None
|
| 793 |
+
colors = [assigned_colors[idx] for idx in sorted_idxs]
|
| 794 |
+
|
| 795 |
+
for i in range(num_instances):
|
| 796 |
+
self.draw_rotated_box_with_label(
|
| 797 |
+
boxes[i], edge_color=colors[i], label=labels[i] if labels is not None else None
|
| 798 |
+
)
|
| 799 |
+
|
| 800 |
+
return self.output
|
| 801 |
+
|
| 802 |
+
def draw_and_connect_keypoints(self, keypoints):
|
| 803 |
+
"""
|
| 804 |
+
Draws keypoints of an instance and follows the rules for keypoint connections
|
| 805 |
+
to draw lines between appropriate keypoints. This follows color heuristics for
|
| 806 |
+
line color.
|
| 807 |
+
|
| 808 |
+
Args:
|
| 809 |
+
keypoints (Tensor): a tensor of shape (K, 3), where K is the number of keypoints
|
| 810 |
+
and the last dimension corresponds to (x, y, probability).
|
| 811 |
+
|
| 812 |
+
Returns:
|
| 813 |
+
output (VisImage): image object with visualizations.
|
| 814 |
+
"""
|
| 815 |
+
visible = {}
|
| 816 |
+
keypoint_names = self.metadata.get("keypoint_names")
|
| 817 |
+
for idx, keypoint in enumerate(keypoints):
|
| 818 |
+
|
| 819 |
+
# draw keypoint
|
| 820 |
+
x, y, prob = keypoint
|
| 821 |
+
if prob > self.keypoint_threshold:
|
| 822 |
+
self.draw_circle((x, y), color=_RED)
|
| 823 |
+
if keypoint_names:
|
| 824 |
+
keypoint_name = keypoint_names[idx]
|
| 825 |
+
visible[keypoint_name] = (x, y)
|
| 826 |
+
|
| 827 |
+
if self.metadata.get("keypoint_connection_rules"):
|
| 828 |
+
for kp0, kp1, color in self.metadata.keypoint_connection_rules:
|
| 829 |
+
if kp0 in visible and kp1 in visible:
|
| 830 |
+
x0, y0 = visible[kp0]
|
| 831 |
+
x1, y1 = visible[kp1]
|
| 832 |
+
color = tuple(x / 255.0 for x in color)
|
| 833 |
+
self.draw_line([x0, x1], [y0, y1], color=color)
|
| 834 |
+
|
| 835 |
+
# draw lines from nose to mid-shoulder and mid-shoulder to mid-hip
|
| 836 |
+
# Note that this strategy is specific to person keypoints.
|
| 837 |
+
# For other keypoints, it should just do nothing
|
| 838 |
+
try:
|
| 839 |
+
ls_x, ls_y = visible["left_shoulder"]
|
| 840 |
+
rs_x, rs_y = visible["right_shoulder"]
|
| 841 |
+
mid_shoulder_x, mid_shoulder_y = (ls_x + rs_x) / 2, (ls_y + rs_y) / 2
|
| 842 |
+
except KeyError:
|
| 843 |
+
pass
|
| 844 |
+
else:
|
| 845 |
+
# draw line from nose to mid-shoulder
|
| 846 |
+
nose_x, nose_y = visible.get("nose", (None, None))
|
| 847 |
+
if nose_x is not None:
|
| 848 |
+
self.draw_line([nose_x, mid_shoulder_x], [nose_y, mid_shoulder_y], color=_RED)
|
| 849 |
+
|
| 850 |
+
try:
|
| 851 |
+
# draw line from mid-shoulder to mid-hip
|
| 852 |
+
lh_x, lh_y = visible["left_hip"]
|
| 853 |
+
rh_x, rh_y = visible["right_hip"]
|
| 854 |
+
except KeyError:
|
| 855 |
+
pass
|
| 856 |
+
else:
|
| 857 |
+
mid_hip_x, mid_hip_y = (lh_x + rh_x) / 2, (lh_y + rh_y) / 2
|
| 858 |
+
self.draw_line([mid_hip_x, mid_shoulder_x], [mid_hip_y, mid_shoulder_y], color=_RED)
|
| 859 |
+
return self.output
|
| 860 |
+
|
| 861 |
+
"""
|
| 862 |
+
Primitive drawing functions:
|
| 863 |
+
"""
|
| 864 |
+
|
| 865 |
+
def draw_text(
|
| 866 |
+
self,
|
| 867 |
+
text,
|
| 868 |
+
position,
|
| 869 |
+
*,
|
| 870 |
+
font_size=None,
|
| 871 |
+
color="g",
|
| 872 |
+
horizontal_alignment="center",
|
| 873 |
+
rotation=0,
|
| 874 |
+
):
|
| 875 |
+
"""
|
| 876 |
+
Args:
|
| 877 |
+
text (str): class label
|
| 878 |
+
position (tuple): a tuple of the x and y coordinates to place text on image.
|
| 879 |
+
font_size (int, optional): font of the text. If not provided, a font size
|
| 880 |
+
proportional to the image width is calculated and used.
|
| 881 |
+
color: color of the text. Refer to `matplotlib.colors` for full list
|
| 882 |
+
of formats that are accepted.
|
| 883 |
+
horizontal_alignment (str): see `matplotlib.text.Text`
|
| 884 |
+
rotation: rotation angle in degrees CCW
|
| 885 |
+
|
| 886 |
+
Returns:
|
| 887 |
+
output (VisImage): image object with text drawn.
|
| 888 |
+
"""
|
| 889 |
+
if not font_size:
|
| 890 |
+
font_size = self._default_font_size
|
| 891 |
+
|
| 892 |
+
# since the text background is dark, we don't want the text to be dark
|
| 893 |
+
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
|
| 894 |
+
color[np.argmax(color)] = max(0.8, np.max(color))
|
| 895 |
+
|
| 896 |
+
x, y = position
|
| 897 |
+
self.output.ax.text(
|
| 898 |
+
x,
|
| 899 |
+
y,
|
| 900 |
+
text,
|
| 901 |
+
size=font_size * self.output.scale,
|
| 902 |
+
family="sans-serif",
|
| 903 |
+
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
|
| 904 |
+
verticalalignment="top",
|
| 905 |
+
horizontalalignment=horizontal_alignment,
|
| 906 |
+
color=color,
|
| 907 |
+
zorder=10,
|
| 908 |
+
rotation=rotation,
|
| 909 |
+
)
|
| 910 |
+
return self.output
|
| 911 |
+
|
| 912 |
+
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
|
| 913 |
+
"""
|
| 914 |
+
Args:
|
| 915 |
+
box_coord (tuple): a tuple containing x0, y0, x1, y1 coordinates, where x0 and y0
|
| 916 |
+
are the coordinates of the image's top left corner. x1 and y1 are the
|
| 917 |
+
coordinates of the image's bottom right corner.
|
| 918 |
+
alpha (float): blending efficient. Smaller values lead to more transparent masks.
|
| 919 |
+
edge_color: color of the outline of the box. Refer to `matplotlib.colors`
|
| 920 |
+
for full list of formats that are accepted.
|
| 921 |
+
line_style (string): the string to use to create the outline of the boxes.
|
| 922 |
+
|
| 923 |
+
Returns:
|
| 924 |
+
output (VisImage): image object with box drawn.
|
| 925 |
+
"""
|
| 926 |
+
x0, y0, x1, y1 = box_coord
|
| 927 |
+
width = x1 - x0
|
| 928 |
+
height = y1 - y0
|
| 929 |
+
|
| 930 |
+
# linewidth = max(self._default_font_size / 4, 1)
|
| 931 |
+
linewidth = 10
|
| 932 |
+
|
| 933 |
+
self.output.ax.add_patch(
|
| 934 |
+
mpl.patches.Rectangle(
|
| 935 |
+
(x0, y0),
|
| 936 |
+
width,
|
| 937 |
+
height,
|
| 938 |
+
fill=False,
|
| 939 |
+
edgecolor=edge_color,
|
| 940 |
+
linewidth=linewidth * self.output.scale,
|
| 941 |
+
alpha=alpha,
|
| 942 |
+
linestyle=line_style,
|
| 943 |
+
)
|
| 944 |
+
)
|
| 945 |
+
return self.output
|
| 946 |
+
|
| 947 |
+
def draw_rotated_box_with_label(
|
| 948 |
+
self, rotated_box, alpha=0.5, edge_color="g", line_style="-", label=None
|
| 949 |
+
):
|
| 950 |
+
"""
|
| 951 |
+
Draw a rotated box with label on its top-left corner.
|
| 952 |
+
|
| 953 |
+
Args:
|
| 954 |
+
rotated_box (tuple): a tuple containing (cnt_x, cnt_y, w, h, angle),
|
| 955 |
+
where cnt_x and cnt_y are the center coordinates of the box.
|
| 956 |
+
w and h are the width and height of the box. angle represents how
|
| 957 |
+
many degrees the box is rotated CCW with regard to the 0-degree box.
|
| 958 |
+
alpha (float): blending efficient. Smaller values lead to more transparent masks.
|
| 959 |
+
edge_color: color of the outline of the box. Refer to `matplotlib.colors`
|
| 960 |
+
for full list of formats that are accepted.
|
| 961 |
+
line_style (string): the string to use to create the outline of the boxes.
|
| 962 |
+
label (string): label for rotated box. It will not be rendered when set to None.
|
| 963 |
+
|
| 964 |
+
Returns:
|
| 965 |
+
output (VisImage): image object with box drawn.
|
| 966 |
+
"""
|
| 967 |
+
cnt_x, cnt_y, w, h, angle = rotated_box
|
| 968 |
+
area = w * h
|
| 969 |
+
# use thinner lines when the box is small
|
| 970 |
+
linewidth = self._default_font_size / (
|
| 971 |
+
6 if area < _SMALL_OBJECT_AREA_THRESH * self.output.scale else 3
|
| 972 |
+
)
|
| 973 |
+
|
| 974 |
+
theta = angle * math.pi / 180.0
|
| 975 |
+
c = math.cos(theta)
|
| 976 |
+
s = math.sin(theta)
|
| 977 |
+
rect = [(-w / 2, h / 2), (-w / 2, -h / 2), (w / 2, -h / 2), (w / 2, h / 2)]
|
| 978 |
+
# x: left->right ; y: top->down
|
| 979 |
+
rotated_rect = [(s * yy + c * xx + cnt_x, c * yy - s * xx + cnt_y) for (xx, yy) in rect]
|
| 980 |
+
for k in range(4):
|
| 981 |
+
j = (k + 1) % 4
|
| 982 |
+
self.draw_line(
|
| 983 |
+
[rotated_rect[k][0], rotated_rect[j][0]],
|
| 984 |
+
[rotated_rect[k][1], rotated_rect[j][1]],
|
| 985 |
+
color=edge_color,
|
| 986 |
+
linestyle="--" if k == 1 else line_style,
|
| 987 |
+
linewidth=linewidth,
|
| 988 |
+
)
|
| 989 |
+
|
| 990 |
+
if label is not None:
|
| 991 |
+
text_pos = rotated_rect[1] # topleft corner
|
| 992 |
+
|
| 993 |
+
height_ratio = h / np.sqrt(self.output.height * self.output.width)
|
| 994 |
+
label_color = self._change_color_brightness(edge_color, brightness_factor=0.7)
|
| 995 |
+
font_size = (
|
| 996 |
+
np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * self._default_font_size
|
| 997 |
+
)
|
| 998 |
+
self.draw_text(label, text_pos, color=label_color, font_size=font_size, rotation=angle)
|
| 999 |
+
|
| 1000 |
+
return self.output
|
| 1001 |
+
|
| 1002 |
+
def draw_circle(self, circle_coord, color, radius=3):
|
| 1003 |
+
"""
|
| 1004 |
+
Args:
|
| 1005 |
+
circle_coord (list(int) or tuple(int)): contains the x and y coordinates
|
| 1006 |
+
of the center of the circle.
|
| 1007 |
+
color: color of the polygon. Refer to `matplotlib.colors` for a full list of
|
| 1008 |
+
formats that are accepted.
|
| 1009 |
+
radius (int): radius of the circle.
|
| 1010 |
+
|
| 1011 |
+
Returns:
|
| 1012 |
+
output (VisImage): image object with box drawn.
|
| 1013 |
+
"""
|
| 1014 |
+
x, y = circle_coord
|
| 1015 |
+
self.output.ax.add_patch(
|
| 1016 |
+
mpl.patches.Circle(circle_coord, radius=radius, fill=False, color=color)
|
| 1017 |
+
)
|
| 1018 |
+
return self.output
|
| 1019 |
+
|
| 1020 |
+
def draw_line(self, x_data, y_data, color, linestyle="-", linewidth=None):
|
| 1021 |
+
"""
|
| 1022 |
+
Args:
|
| 1023 |
+
x_data (list[int]): a list containing x values of all the points being drawn.
|
| 1024 |
+
Length of list should match the length of y_data.
|
| 1025 |
+
y_data (list[int]): a list containing y values of all the points being drawn.
|
| 1026 |
+
Length of list should match the length of x_data.
|
| 1027 |
+
color: color of the line. Refer to `matplotlib.colors` for a full list of
|
| 1028 |
+
formats that are accepted.
|
| 1029 |
+
linestyle: style of the line. Refer to `matplotlib.lines.Line2D`
|
| 1030 |
+
for a full list of formats that are accepted.
|
| 1031 |
+
linewidth (float or None): width of the line. When it's None,
|
| 1032 |
+
a default value will be computed and used.
|
| 1033 |
+
|
| 1034 |
+
Returns:
|
| 1035 |
+
output (VisImage): image object with line drawn.
|
| 1036 |
+
"""
|
| 1037 |
+
if linewidth is None:
|
| 1038 |
+
linewidth = self._default_font_size / 3
|
| 1039 |
+
linewidth = max(linewidth, 1)
|
| 1040 |
+
self.output.ax.add_line(
|
| 1041 |
+
mpl.lines.Line2D(
|
| 1042 |
+
x_data,
|
| 1043 |
+
y_data,
|
| 1044 |
+
linewidth=linewidth * self.output.scale,
|
| 1045 |
+
color=color,
|
| 1046 |
+
linestyle=linestyle,
|
| 1047 |
+
)
|
| 1048 |
+
)
|
| 1049 |
+
return self.output
|
| 1050 |
+
|
| 1051 |
+
def draw_binary_mask(
|
| 1052 |
+
self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.5, area_threshold=10
|
| 1053 |
+
):
|
| 1054 |
+
"""
|
| 1055 |
+
Args:
|
| 1056 |
+
binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
|
| 1057 |
+
W is the image width. Each value in the array is either a 0 or 1 value of uint8
|
| 1058 |
+
type.
|
| 1059 |
+
color: color of the mask. Refer to `matplotlib.colors` for a full list of
|
| 1060 |
+
formats that are accepted. If None, will pick a random color.
|
| 1061 |
+
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
|
| 1062 |
+
full list of formats that are accepted.
|
| 1063 |
+
text (str): if None, will be drawn on the object
|
| 1064 |
+
alpha (float): blending efficient. Smaller values lead to more transparent masks.
|
| 1065 |
+
area_threshold (float): a connected component smaller than this area will not be shown.
|
| 1066 |
+
|
| 1067 |
+
Returns:
|
| 1068 |
+
output (VisImage): image object with mask drawn.
|
| 1069 |
+
"""
|
| 1070 |
+
if color is None:
|
| 1071 |
+
color = random_color(rgb=True, maximum=1)
|
| 1072 |
+
color = mplc.to_rgb(color)
|
| 1073 |
+
|
| 1074 |
+
has_valid_segment = False
|
| 1075 |
+
binary_mask = binary_mask.astype("uint8") # opencv needs uint8
|
| 1076 |
+
mask = GenericMask(binary_mask, self.output.height, self.output.width)
|
| 1077 |
+
shape2d = (binary_mask.shape[0], binary_mask.shape[1])
|
| 1078 |
+
|
| 1079 |
+
if not mask.has_holes:
|
| 1080 |
+
# draw polygons for regular masks
|
| 1081 |
+
for segment in mask.polygons:
|
| 1082 |
+
area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1]))
|
| 1083 |
+
if area < (area_threshold or 0):
|
| 1084 |
+
continue
|
| 1085 |
+
has_valid_segment = True
|
| 1086 |
+
segment = segment.reshape(-1, 2)
|
| 1087 |
+
self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha)
|
| 1088 |
+
else:
|
| 1089 |
+
# TODO: Use Path/PathPatch to draw vector graphics:
|
| 1090 |
+
# https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon
|
| 1091 |
+
rgba = np.zeros(shape2d + (4,), dtype="float32")
|
| 1092 |
+
rgba[:, :, :3] = color
|
| 1093 |
+
rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
|
| 1094 |
+
has_valid_segment = True
|
| 1095 |
+
self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0))
|
| 1096 |
+
|
| 1097 |
+
if text is not None and has_valid_segment:
|
| 1098 |
+
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
|
| 1099 |
+
self._draw_text_in_mask(binary_mask, text, lighter_color)
|
| 1100 |
+
return self.output
|
| 1101 |
+
|
| 1102 |
+
def draw_soft_mask(self, soft_mask, color=None, *, text=None, alpha=0.5):
|
| 1103 |
+
"""
|
| 1104 |
+
Args:
|
| 1105 |
+
soft_mask (ndarray): float array of shape (H, W), each value in [0, 1].
|
| 1106 |
+
color: color of the mask. Refer to `matplotlib.colors` for a full list of
|
| 1107 |
+
formats that are accepted. If None, will pick a random color.
|
| 1108 |
+
text (str): if None, will be drawn on the object
|
| 1109 |
+
alpha (float): blending efficient. Smaller values lead to more transparent masks.
|
| 1110 |
+
|
| 1111 |
+
Returns:
|
| 1112 |
+
output (VisImage): image object with mask drawn.
|
| 1113 |
+
"""
|
| 1114 |
+
if color is None:
|
| 1115 |
+
color = random_color(rgb=True, maximum=1)
|
| 1116 |
+
color = mplc.to_rgb(color)
|
| 1117 |
+
|
| 1118 |
+
shape2d = (soft_mask.shape[0], soft_mask.shape[1])
|
| 1119 |
+
rgba = np.zeros(shape2d + (4,), dtype="float32")
|
| 1120 |
+
rgba[:, :, :3] = color
|
| 1121 |
+
rgba[:, :, 3] = soft_mask * alpha
|
| 1122 |
+
self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0))
|
| 1123 |
+
|
| 1124 |
+
if text is not None:
|
| 1125 |
+
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
|
| 1126 |
+
binary_mask = (soft_mask > 0.5).astype("uint8")
|
| 1127 |
+
self._draw_text_in_mask(binary_mask, text, lighter_color)
|
| 1128 |
+
return self.output
|
| 1129 |
+
|
| 1130 |
+
def draw_polygon(self, segment, color, edge_color=None, alpha=1.0):
|
| 1131 |
+
"""
|
| 1132 |
+
Args:
|
| 1133 |
+
segment: numpy array of shape Nx2, containing all the points in the polygon.
|
| 1134 |
+
color: color of the polygon. Refer to `matplotlib.colors` for a full list of
|
| 1135 |
+
formats that are accepted.
|
| 1136 |
+
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
|
| 1137 |
+
full list of formats that are accepted. If not provided, a darker shade
|
| 1138 |
+
of the polygon color will be used instead.
|
| 1139 |
+
alpha (float): blending efficient. Smaller values lead to more transparent masks.
|
| 1140 |
+
|
| 1141 |
+
Returns:
|
| 1142 |
+
output (VisImage): image object with polygon drawn.
|
| 1143 |
+
"""
|
| 1144 |
+
if edge_color is None:
|
| 1145 |
+
# make edge color darker than the polygon color
|
| 1146 |
+
if alpha > 0.8:
|
| 1147 |
+
edge_color = self._change_color_brightness(color, brightness_factor=-0.7)
|
| 1148 |
+
else:
|
| 1149 |
+
edge_color = color
|
| 1150 |
+
edge_color = mplc.to_rgb(edge_color) + (1,)
|
| 1151 |
+
|
| 1152 |
+
polygon = mpl.patches.Polygon(
|
| 1153 |
+
segment,
|
| 1154 |
+
fill=False,
|
| 1155 |
+
facecolor=mplc.to_rgb(color) + (alpha,),
|
| 1156 |
+
edgecolor=edge_color,
|
| 1157 |
+
linewidth=max(self._default_font_size // 15 * self.output.scale, 1),
|
| 1158 |
+
)
|
| 1159 |
+
self.output.ax.add_patch(polygon)
|
| 1160 |
+
return self.output
|
| 1161 |
+
|
| 1162 |
+
"""
|
| 1163 |
+
Internal methods:
|
| 1164 |
+
"""
|
| 1165 |
+
|
| 1166 |
+
def _jitter(self, color):
|
| 1167 |
+
"""
|
| 1168 |
+
Randomly modifies given color to produce a slightly different color than the color given.
|
| 1169 |
+
|
| 1170 |
+
Args:
|
| 1171 |
+
color (tuple[double]): a tuple of 3 elements, containing the RGB values of the color
|
| 1172 |
+
picked. The values in the list are in the [0.0, 1.0] range.
|
| 1173 |
+
|
| 1174 |
+
Returns:
|
| 1175 |
+
jittered_color (tuple[double]): a tuple of 3 elements, containing the RGB values of the
|
| 1176 |
+
color after being jittered. The values in the list are in the [0.0, 1.0] range.
|
| 1177 |
+
"""
|
| 1178 |
+
color = mplc.to_rgb(color)
|
| 1179 |
+
vec = np.random.rand(3)
|
| 1180 |
+
# better to do it in another color space
|
| 1181 |
+
vec = vec / np.linalg.norm(vec) * 0.5
|
| 1182 |
+
res = np.clip(vec + color, 0, 1)
|
| 1183 |
+
return tuple(res)
|
| 1184 |
+
|
| 1185 |
+
def _create_grayscale_image(self, mask=None):
|
| 1186 |
+
"""
|
| 1187 |
+
Create a grayscale version of the original image.
|
| 1188 |
+
The colors in masked area, if given, will be kept.
|
| 1189 |
+
"""
|
| 1190 |
+
img_bw = self.img.astype("f4").mean(axis=2)
|
| 1191 |
+
img_bw = np.stack([img_bw] * 3, axis=2)
|
| 1192 |
+
if mask is not None:
|
| 1193 |
+
img_bw[mask] = self.img[mask]
|
| 1194 |
+
return img_bw
|
| 1195 |
+
|
| 1196 |
+
def _change_color_brightness(self, color, brightness_factor):
|
| 1197 |
+
"""
|
| 1198 |
+
Depending on the brightness_factor, gives a lighter or darker color i.e. a color with
|
| 1199 |
+
less or more saturation than the original color.
|
| 1200 |
+
|
| 1201 |
+
Args:
|
| 1202 |
+
color: color of the polygon. Refer to `matplotlib.colors` for a full list of
|
| 1203 |
+
formats that are accepted.
|
| 1204 |
+
brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of
|
| 1205 |
+
0 will correspond to no change, a factor in [-1.0, 0) range will result in
|
| 1206 |
+
a darker color and a factor in (0, 1.0] range will result in a lighter color.
|
| 1207 |
+
|
| 1208 |
+
Returns:
|
| 1209 |
+
modified_color (tuple[double]): a tuple containing the RGB values of the
|
| 1210 |
+
modified color. Each value in the tuple is in the [0.0, 1.0] range.
|
| 1211 |
+
"""
|
| 1212 |
+
assert brightness_factor >= -1.0 and brightness_factor <= 1.0
|
| 1213 |
+
color = mplc.to_rgb(color)
|
| 1214 |
+
polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
|
| 1215 |
+
modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
|
| 1216 |
+
modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
|
| 1217 |
+
modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
|
| 1218 |
+
modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2])
|
| 1219 |
+
return modified_color
|
| 1220 |
+
|
| 1221 |
+
def _convert_boxes(self, boxes):
|
| 1222 |
+
"""
|
| 1223 |
+
Convert different format of boxes to an NxB array, where B = 4 or 5 is the box dimension.
|
| 1224 |
+
"""
|
| 1225 |
+
if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes):
|
| 1226 |
+
return boxes.tensor.detach().numpy()
|
| 1227 |
+
else:
|
| 1228 |
+
return np.asarray(boxes)
|
| 1229 |
+
|
| 1230 |
+
def _convert_masks(self, masks_or_polygons):
|
| 1231 |
+
"""
|
| 1232 |
+
Convert different format of masks or polygons to a tuple of masks and polygons.
|
| 1233 |
+
|
| 1234 |
+
Returns:
|
| 1235 |
+
list[GenericMask]:
|
| 1236 |
+
"""
|
| 1237 |
+
|
| 1238 |
+
m = masks_or_polygons
|
| 1239 |
+
if isinstance(m, PolygonMasks):
|
| 1240 |
+
m = m.polygons
|
| 1241 |
+
if isinstance(m, BitMasks):
|
| 1242 |
+
m = m.tensor.numpy()
|
| 1243 |
+
if isinstance(m, torch.Tensor):
|
| 1244 |
+
m = m.numpy()
|
| 1245 |
+
ret = []
|
| 1246 |
+
for x in m:
|
| 1247 |
+
if isinstance(x, GenericMask):
|
| 1248 |
+
ret.append(x)
|
| 1249 |
+
else:
|
| 1250 |
+
ret.append(GenericMask(x, self.output.height, self.output.width))
|
| 1251 |
+
return ret
|
| 1252 |
+
|
| 1253 |
+
def _draw_text_in_mask(self, binary_mask, text, color):
|
| 1254 |
+
"""
|
| 1255 |
+
Find proper places to draw text given a binary mask.
|
| 1256 |
+
"""
|
| 1257 |
+
# TODO sometimes drawn on wrong objects. the heuristics here can improve.
|
| 1258 |
+
_num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8)
|
| 1259 |
+
if stats[1:, -1].size == 0:
|
| 1260 |
+
return
|
| 1261 |
+
largest_component_id = np.argmax(stats[1:, -1]) + 1
|
| 1262 |
+
|
| 1263 |
+
# draw text on the largest component, as well as other very large components.
|
| 1264 |
+
for cid in range(1, _num_cc):
|
| 1265 |
+
if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
|
| 1266 |
+
# median is more stable than centroid
|
| 1267 |
+
# center = centroids[largest_component_id]
|
| 1268 |
+
center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
|
| 1269 |
+
self.draw_text(text, center, color=color)
|
| 1270 |
+
|
| 1271 |
+
def _convert_keypoints(self, keypoints):
|
| 1272 |
+
if isinstance(keypoints, Keypoints):
|
| 1273 |
+
keypoints = keypoints.tensor
|
| 1274 |
+
keypoints = np.asarray(keypoints)
|
| 1275 |
+
return keypoints
|
| 1276 |
+
|
| 1277 |
+
def get_output(self):
|
| 1278 |
+
"""
|
| 1279 |
+
Returns:
|
| 1280 |
+
output (VisImage): the image output containing the visualizations added
|
| 1281 |
+
to the image.
|
| 1282 |
+
"""
|
| 1283 |
+
return self.output
|