Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,10 +20,13 @@ import torch.backends.cudnn as cudnn
|
|
| 20 |
from torchvision import transforms as pth_transforms
|
| 21 |
import shutil
|
| 22 |
import os
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
| 27 |
|
| 28 |
|
| 29 |
sys.path.append("./segment-anything")
|
|
@@ -40,21 +43,29 @@ OBJECT_SAVE_PATH = "./database/Objects/masks"
|
|
| 40 |
FACE_SAVE_PATH = "./database/Faces/masks"
|
| 41 |
|
| 42 |
# Initialize SAM model
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
def initialize_sam(sam_checkpoint, model_type="vit_h"):
|
| 44 |
-
sam
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
return sam
|
| 47 |
|
| 48 |
-
# Path to the SAM checkpoint
|
| 49 |
-
sam_checkpoint = "./sam_vit_h_4b8939.pth"
|
| 50 |
-
sam = initialize_sam(sam_checkpoint)
|
| 51 |
-
predictor = None
|
| 52 |
-
|
| 53 |
|
| 54 |
# Load RADIO model
|
| 55 |
model_version = "radio_v2.5-h" # Using RADIOv2.5-H model (ViT-H/16)
|
| 56 |
-
model =
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
def extract_features(image_path):
|
| 60 |
"""Extract features from an image using the RADIO model."""
|
|
@@ -140,11 +151,14 @@ def _robust_collate_fn_for_extract_features(batch):
|
|
| 140 |
return image_data_list, batched_indices
|
| 141 |
|
| 142 |
|
|
|
|
| 143 |
def extract_features(object_dataset, batch_size, num_workers):
|
| 144 |
"""
|
| 145 |
Extracts features from images, handling inputs as paths, PIL Images, or Tensors.
|
| 146 |
Assumes `model`, `model_version`, `pil_to_tensor` are in calling scope.
|
| 147 |
"""
|
|
|
|
|
|
|
| 148 |
dataloader = DataLoader(
|
| 149 |
object_dataset,
|
| 150 |
batch_size=batch_size,
|
|
@@ -473,12 +487,18 @@ def navigate_images(is_same_object=False):
|
|
| 473 |
status_text = state.get_status_text()
|
| 474 |
return current_image, mask_display, status_text, state.get_gallery(), None # Return None to clear file upload
|
| 475 |
|
|
|
|
| 476 |
def generate_mask(image, evt: gr.SelectData): # 'image' is the numpy array from the clicked component
|
| 477 |
-
global predictor
|
| 478 |
|
| 479 |
# Use the image passed by the event!
|
| 480 |
if image is None:
|
| 481 |
return None, None, "Cannot segment: Image component is empty.", state.get_gallery()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
|
| 483 |
# Ensure the image is a NumPy array in RGB format (Gradio usually provides this)
|
| 484 |
if not isinstance(image, np.ndarray):
|
|
@@ -935,7 +955,7 @@ imsize = 224
|
|
| 935 |
args = args_parser.parse_args(args=[
|
| 936 |
"--train_path", "./database/Objects/masks",
|
| 937 |
"--test_path", "temp_path_placeholder", # This will be updated during runtime
|
| 938 |
-
"--pretrained_weights", "
|
| 939 |
"--output_dir", f"exps/output_RankSelect_{imsize}_mask", # Default tag, will be updated
|
| 940 |
])
|
| 941 |
|
|
@@ -943,8 +963,15 @@ args = args_parser.parse_args(args=[
|
|
| 943 |
os.makedirs(args.output_dir, exist_ok=True)
|
| 944 |
#model, autocast_dtype = setup_and_build_model(args)
|
| 945 |
|
|
|
|
| 946 |
def detect_objects(input_img, score_threshold=0.52, tag="mask"):
|
| 947 |
"""Main function to detect objects in an image"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 948 |
# Create temporary file for the input image
|
| 949 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as f:
|
| 950 |
temp_path = f.name
|
|
@@ -1256,6 +1283,7 @@ def detect_objects(input_img, score_threshold=0.52, tag="mask"):
|
|
| 1256 |
# ===== FACE DETECTION AND RECOGNITION PART =====
|
| 1257 |
|
| 1258 |
# Initialize face detection and recognition models
|
|
|
|
| 1259 |
def initialize_face_models():
|
| 1260 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 1261 |
mtcnn = MTCNN(
|
|
@@ -1351,6 +1379,7 @@ def get_face_embeddings(face_dir=FACE_SAVE_PATH):
|
|
| 1351 |
return embeddings, face_names, face_paths, face_anns
|
| 1352 |
|
| 1353 |
# Detect and recognize faces in an image
|
|
|
|
| 1354 |
def detect_faces(input_img, score_threshold=0.7):
|
| 1355 |
mtcnn, resnet, device = initialize_face_models()
|
| 1356 |
|
|
@@ -1504,6 +1533,7 @@ def match_faces_stable_matching(face_embeddings, detected_embeddings, score_thre
|
|
| 1504 |
|
| 1505 |
return matches, similarities
|
| 1506 |
# 1. Add the combined detection function
|
|
|
|
| 1507 |
def combined_detection(img, obj_threshold, face_threshold, tag):
|
| 1508 |
"""
|
| 1509 |
Run both object detection and face detection on the same image
|
|
@@ -1599,37 +1629,40 @@ from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
|
| 1599 |
from qwen_vl_utils import process_vision_info
|
| 1600 |
|
| 1601 |
# Load model and processor at the application level for reuse
|
|
|
|
| 1602 |
def load_qwen2vl_model():
|
| 1603 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 1604 |
-
|
| 1605 |
-
"/mnt/14T-disk/code/Contextual_Referring_Understanding/LLaMA-Factory/models/qwen2_vl_2b_citation_lora_sft_face_3/goodcaption-20000",
|
| 1606 |
torch_dtype=torch.bfloat16,
|
| 1607 |
-
device_map="
|
| 1608 |
)
|
| 1609 |
min_pixels = 256 * 28 * 28
|
| 1610 |
max_pixels = 1280 * 28 * 28
|
| 1611 |
processor = AutoProcessor.from_pretrained(
|
| 1612 |
"Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
|
| 1613 |
)
|
| 1614 |
-
#processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
| 1615 |
return model, processor
|
| 1616 |
|
| 1617 |
-
#
|
| 1618 |
-
|
| 1619 |
-
|
| 1620 |
-
|
| 1621 |
-
except Exception as e:
|
| 1622 |
-
print(f"Failed to load Qwen2-VL model: {e}")
|
| 1623 |
-
qwen_model_loaded = False
|
| 1624 |
|
| 1625 |
# Function to process detection results and use Qwen2-VL for answering questions
|
|
|
|
| 1626 |
def ask_qwen_about_detections(input_image, question, obj_threshold, face_threshold, tag):
|
| 1627 |
"""
|
| 1628 |
Process an image with detection and use Qwen2-VL to answer questions
|
| 1629 |
"""
|
| 1630 |
-
|
| 1631 |
-
|
| 1632 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1633 |
|
| 1634 |
# Get detection results and formatted text
|
| 1635 |
qwen_input, output_img = process_image_for_qwen(input_image, obj_threshold, face_threshold, tag)
|
|
@@ -2146,7 +2179,7 @@ with gr.Blocks() as app:
|
|
| 2146 |
lines=2
|
| 2147 |
)
|
| 2148 |
|
| 2149 |
-
qwen_ask_button = gr.Button("Ask RC-MLLM-
|
| 2150 |
|
| 2151 |
with gr.Column():
|
| 2152 |
qwen_output_image = gr.Image(label="Detection Result")
|
|
@@ -2174,8 +2207,7 @@ with gr.Blocks() as app:
|
|
| 2174 |
|
| 2175 |
# Model status display
|
| 2176 |
model_status = gr.Markdown(
|
| 2177 |
-
"
|
| 2178 |
-
"β RC-MLLM model not loaded. Please check console for errors."
|
| 2179 |
)
|
| 2180 |
|
| 2181 |
# Instructions for RC-MLLM section
|
|
|
|
| 20 |
from torchvision import transforms as pth_transforms
|
| 21 |
import shutil
|
| 22 |
import os
|
| 23 |
+
import spaces
|
| 24 |
|
| 25 |
|
| 26 |
+
# Download SAM checkpoint if not exists
|
| 27 |
+
import subprocess
|
| 28 |
+
if not os.path.exists("./sam_vit_h_4b8939.pth"):
|
| 29 |
+
subprocess.run(["wget", "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"])
|
| 30 |
|
| 31 |
|
| 32 |
sys.path.append("./segment-anything")
|
|
|
|
| 43 |
FACE_SAVE_PATH = "./database/Faces/masks"
|
| 44 |
|
| 45 |
# Initialize SAM model
|
| 46 |
+
sam = None
|
| 47 |
+
predictor = None
|
| 48 |
+
|
| 49 |
+
@spaces.GPU
|
| 50 |
def initialize_sam(sam_checkpoint, model_type="vit_h"):
|
| 51 |
+
global sam
|
| 52 |
+
if sam is None:
|
| 53 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
| 54 |
+
sam.to(device="cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
return sam
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# Load RADIO model
|
| 59 |
model_version = "radio_v2.5-h" # Using RADIOv2.5-H model (ViT-H/16)
|
| 60 |
+
model = None # Initialize as None, will be loaded when needed
|
| 61 |
+
|
| 62 |
+
@spaces.GPU
|
| 63 |
+
def load_radio_model():
|
| 64 |
+
global model
|
| 65 |
+
if model is None:
|
| 66 |
+
model = torch.hub.load('NVlabs/RADIO', 'radio_model', version=model_version, progress=True, skip_validation=True)
|
| 67 |
+
model.cuda().eval()
|
| 68 |
+
return model
|
| 69 |
|
| 70 |
def extract_features(image_path):
|
| 71 |
"""Extract features from an image using the RADIO model."""
|
|
|
|
| 151 |
return image_data_list, batched_indices
|
| 152 |
|
| 153 |
|
| 154 |
+
@spaces.GPU
|
| 155 |
def extract_features(object_dataset, batch_size, num_workers):
|
| 156 |
"""
|
| 157 |
Extracts features from images, handling inputs as paths, PIL Images, or Tensors.
|
| 158 |
Assumes `model`, `model_version`, `pil_to_tensor` are in calling scope.
|
| 159 |
"""
|
| 160 |
+
# Ensure model is loaded
|
| 161 |
+
model = load_radio_model()
|
| 162 |
dataloader = DataLoader(
|
| 163 |
object_dataset,
|
| 164 |
batch_size=batch_size,
|
|
|
|
| 487 |
status_text = state.get_status_text()
|
| 488 |
return current_image, mask_display, status_text, state.get_gallery(), None # Return None to clear file upload
|
| 489 |
|
| 490 |
+
@spaces.GPU
|
| 491 |
def generate_mask(image, evt: gr.SelectData): # 'image' is the numpy array from the clicked component
|
| 492 |
+
global predictor, sam
|
| 493 |
|
| 494 |
# Use the image passed by the event!
|
| 495 |
if image is None:
|
| 496 |
return None, None, "Cannot segment: Image component is empty.", state.get_gallery()
|
| 497 |
+
|
| 498 |
+
# Initialize SAM if not already done
|
| 499 |
+
if sam is None:
|
| 500 |
+
sam_checkpoint = "./sam_vit_h_4b8939.pth"
|
| 501 |
+
sam = initialize_sam(sam_checkpoint)
|
| 502 |
|
| 503 |
# Ensure the image is a NumPy array in RGB format (Gradio usually provides this)
|
| 504 |
if not isinstance(image, np.ndarray):
|
|
|
|
| 955 |
args = args_parser.parse_args(args=[
|
| 956 |
"--train_path", "./database/Objects/masks",
|
| 957 |
"--test_path", "temp_path_placeholder", # This will be updated during runtime
|
| 958 |
+
"--pretrained_weights", "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_reg4_pretrain.pth",
|
| 959 |
"--output_dir", f"exps/output_RankSelect_{imsize}_mask", # Default tag, will be updated
|
| 960 |
])
|
| 961 |
|
|
|
|
| 963 |
os.makedirs(args.output_dir, exist_ok=True)
|
| 964 |
#model, autocast_dtype = setup_and_build_model(args)
|
| 965 |
|
| 966 |
+
@spaces.GPU
|
| 967 |
def detect_objects(input_img, score_threshold=0.52, tag="mask"):
|
| 968 |
"""Main function to detect objects in an image"""
|
| 969 |
+
global sam
|
| 970 |
+
|
| 971 |
+
# Initialize SAM if not already done
|
| 972 |
+
if sam is None:
|
| 973 |
+
sam_checkpoint = "./sam_vit_h_4b8939.pth"
|
| 974 |
+
sam = initialize_sam(sam_checkpoint)
|
| 975 |
# Create temporary file for the input image
|
| 976 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as f:
|
| 977 |
temp_path = f.name
|
|
|
|
| 1283 |
# ===== FACE DETECTION AND RECOGNITION PART =====
|
| 1284 |
|
| 1285 |
# Initialize face detection and recognition models
|
| 1286 |
+
@spaces.GPU
|
| 1287 |
def initialize_face_models():
|
| 1288 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 1289 |
mtcnn = MTCNN(
|
|
|
|
| 1379 |
return embeddings, face_names, face_paths, face_anns
|
| 1380 |
|
| 1381 |
# Detect and recognize faces in an image
|
| 1382 |
+
@spaces.GPU
|
| 1383 |
def detect_faces(input_img, score_threshold=0.7):
|
| 1384 |
mtcnn, resnet, device = initialize_face_models()
|
| 1385 |
|
|
|
|
| 1533 |
|
| 1534 |
return matches, similarities
|
| 1535 |
# 1. Add the combined detection function
|
| 1536 |
+
@spaces.GPU
|
| 1537 |
def combined_detection(img, obj_threshold, face_threshold, tag):
|
| 1538 |
"""
|
| 1539 |
Run both object detection and face detection on the same image
|
|
|
|
| 1629 |
from qwen_vl_utils import process_vision_info
|
| 1630 |
|
| 1631 |
# Load model and processor at the application level for reuse
|
| 1632 |
+
@spaces.GPU
|
| 1633 |
def load_qwen2vl_model():
|
| 1634 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 1635 |
+
"Qwen/Qwen2-VL-2B-Instruct", # Use the base model for HF Spaces
|
|
|
|
| 1636 |
torch_dtype=torch.bfloat16,
|
| 1637 |
+
device_map="auto"
|
| 1638 |
)
|
| 1639 |
min_pixels = 256 * 28 * 28
|
| 1640 |
max_pixels = 1280 * 28 * 28
|
| 1641 |
processor = AutoProcessor.from_pretrained(
|
| 1642 |
"Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
|
| 1643 |
)
|
|
|
|
| 1644 |
return model, processor
|
| 1645 |
|
| 1646 |
+
# Initialize model variables
|
| 1647 |
+
qwen_model = None
|
| 1648 |
+
qwen_processor = None
|
| 1649 |
+
qwen_model_loaded = False
|
|
|
|
|
|
|
|
|
|
| 1650 |
|
| 1651 |
# Function to process detection results and use Qwen2-VL for answering questions
|
| 1652 |
+
@spaces.GPU
|
| 1653 |
def ask_qwen_about_detections(input_image, question, obj_threshold, face_threshold, tag):
|
| 1654 |
"""
|
| 1655 |
Process an image with detection and use Qwen2-VL to answer questions
|
| 1656 |
"""
|
| 1657 |
+
global qwen_model, qwen_processor, qwen_model_loaded
|
| 1658 |
+
|
| 1659 |
+
# Load model if not already loaded
|
| 1660 |
+
if qwen_model is None:
|
| 1661 |
+
try:
|
| 1662 |
+
qwen_model, qwen_processor = load_qwen2vl_model()
|
| 1663 |
+
qwen_model_loaded = True
|
| 1664 |
+
except Exception as e:
|
| 1665 |
+
return f"Failed to load Qwen2-VL model: {e}", None, None
|
| 1666 |
|
| 1667 |
# Get detection results and formatted text
|
| 1668 |
qwen_input, output_img = process_image_for_qwen(input_image, obj_threshold, face_threshold, tag)
|
|
|
|
| 2179 |
lines=2
|
| 2180 |
)
|
| 2181 |
|
| 2182 |
+
qwen_ask_button = gr.Button("Ask RC-MLLM-2B")
|
| 2183 |
|
| 2184 |
with gr.Column():
|
| 2185 |
qwen_output_image = gr.Image(label="Detection Result")
|
|
|
|
| 2207 |
|
| 2208 |
# Model status display
|
| 2209 |
model_status = gr.Markdown(
|
| 2210 |
+
"π RC-MLLM model will be loaded when first used (ZeroGPU)"
|
|
|
|
| 2211 |
)
|
| 2212 |
|
| 2213 |
# Instructions for RC-MLLM section
|