File size: 12,985 Bytes
aaef88a
 
 
 
 
627e508
 
 
aaef88a
 
627e508
 
aaef88a
627e508
aaef88a
 
627e508
aaef88a
627e508
aaef88a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627e508
 
aaef88a
 
 
627e508
aaef88a
627e508
aaef88a
627e508
 
 
 
 
 
 
 
 
 
 
 
aaef88a
 
 
627e508
 
aaef88a
627e508
aaef88a
627e508
 
aaef88a
 
627e508
 
aaef88a
 
 
627e508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaef88a
 
 
 
 
1130c6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>Qwen-Image - Advanced Text-to-Image Generation by Alibaba Cloud</title>
    <meta name="description" content="Qwen-Image: Part of the Qwen (Tongyi Qianwen) model series by Alibaba Cloud. A powerful text-to-image generative model that creates stunning images from text prompts with high-quality rendering, artistic style control, and exceptional detail." />
    <meta name="keywords" content="Qwen-Image, Qwen, Tongyi Qianwen, Alibaba Cloud, Text-to-Image, AI Models, Prompt Engineering, Image Generation, AI Art, Generative AI, Image Synthesis, Multimodal AI" />
    
    <!-- Open Graph / Social Media Meta Tags -->
    <meta property="og:title" content="Qwen-Image - Advanced Text-to-Image Generation by Alibaba Cloud" />
    <meta property="og:description" content="Transform your text into stunning images with Qwen-Image, part of the Tongyi Qianwen model series developed by Alibaba Cloud" />
    <meta property="og:type" content="website" />
    <meta property="og:url" content="https://huggingface.co/Qwen/Qwen-Image" />
    
    <!-- Additional Meta Information -->
    <meta name="author" content="Alibaba Cloud Qwen Team" />
    <meta name="robots" content="index, follow" />
    <link rel="canonical" href="https://huggingface.co/Qwen/Qwen-Image" />
    
    <link rel="stylesheet" href="style.css" />
</head>
<body>
    <nav class="top-nav">
        <div class="nav-content">
            <div class="nav-logo">QWEN</div>
            <div class="nav-links">
                <a href="https://wavespeed.ai/models/wavespeed-ai/qwen-image/text-to-image" class="nav-link" target="_blank" rel="noopener noreferrer">Home</a>
                <a href="https://wavespeed.ai/docs" class="nav-link" target="_blank" rel="noopener noreferrer">Documentation</a>
                <a href="https://wavespeed.ai/blog" class="nav-link" target="_blank" rel="noopener noreferrer">Blog</a>
                <a href="https://wavespeed.ai/models/wavespeed-ai/qwen-image/text-to-image" class="nav-button" target="_blank" rel="noopener noreferrer">Visit WaveSpeedAI →</a>
            </div>
        </div>
    </nav>

    <div class="container">
        <div class="content">
            <div class="logo-section">
                <h1>Qwen-Image</h1>
                <p class="subtitle">By Alibaba Cloud Qwen Team</p>
            </div>
            
            <div class="announcement-section">
                <p class="announcement">Qwen-Image is now available!</p>
                <div class="divider"></div>
                <p class="description">Open-source Advanced Text-to-Image Generative Model</p>
            </div>
            
            <div class="hero-image">
                <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/merge3.jpg" alt="Qwen-Image Examples" class="full-width-img">
            </div>

            <section class="intro-section">
                <h2>Introduction</h2>
                <p>We are thrilled to release Qwen-Image, an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. Experiments show strong general capabilities in both image generation and editing, with exceptional performance in text rendering, especially for Chinese.</p>
                <div class="benchmark-image">
                    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/bench.png" alt="Qwen-Image Benchmark" class="full-width-img">
                </div>
            </section>

            <div class="features-section">
                <div class="feature">
                    <h3>🚀 Multimodal AI Capabilities</h3>
                    <p>Part of the Qwen (Tongyi Qianwen) model series, offering powerful text-to-image generation with exceptional understanding of complex prompts</p>
                </div>
              
                <div class="feature">
                    <h3>🌟 Open Source Innovation</h3>
                    <p>Part of Alibaba's commitment to open-source AI development, allowing researchers and developers to build upon and extend its capabilities</p>
                </div>
                <div class="feature">
                    <h3>🔍 Comprehensive Model Family</h3>
                    <p>Works alongside other Qwen models for text, vision, and multimodal applications, providing a complete ecosystem for AI development</p>
                </div>
            </div>

            <section class="quickstart-section">
                <h2>Quick Start</h2>
                <p>Choose your preferred Qwen image model:</p>
                
                <h3>Option 1: Using the latest Qwen VLo model</h3>
                <p>The new Qwen VLo model supports both text-to-image and image-to-image generation with progressive generation feature.</p>
                <div class="code-block">
                    <pre><code>pip install dashscope>=1.20.7</code></pre>
                </div>
                <div class="code-block">
                    <pre><code>import dashscope
from dashscope import ImageSynthesis

# Set your API key
dashscope.api_key = "YOUR_API_KEY"

# Text-to-image generation
response = ImageSynthesis.call(
    model='qwen-vlo',
    prompt='A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup"',
    negative_prompt='blurry, low quality',
    n=1,  # Number of images to generate
    size='1024*1024',  # Image size
    steps=50  # Diffusion steps
)

# Save the generated image
if response.status_code == 200:
    with open('qwen_vlo_result.png', 'wb') as f:
        f.write(response.output.images[0].image)
        print('Image saved successfully!')
else:
    print(f'Failed to generate image: {response.message}')</code></pre>
                </div>
                
                <h3>Option 2: Using Qwen-Image with diffusers</h3>
                <p>Install the latest version of diffusers</p>
                <div class="code-block">
                    <pre><code>pip install git+https://github.com/huggingface/diffusers</code></pre>
                </div>
                <p>The following contains a code snippet illustrating how to use the model to generate images based on text prompts:</p>
                <div class="code-block">
                    <pre><code>from diffusers import DiffusionPipeline
import torch

model_name = "Qwen/Qwen-Image"

# Load the pipeline
if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
    device = "cuda"
else:
    torch_dtype = torch.float32
    device = "cpu"

pipe = DiffusionPipeline.from_pretrained(model_name, torch_dtype=torch_dtype)
pipe = pipe.to(device)

positive_magic = {
    "en": "Ultra HD, 4K, cinematic composition.", # for english prompt
    "zh": "超清,4K,电影级构图" # for chinese prompt
}

# Generate image
prompt = '''A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197". Ultra HD, 4K, cinematic composition'''

negative_prompt = " "

# Generate with different aspect ratios
aspect_ratios = {
    "1:1": (1328, 1328),
    "16:9": (1664, 928),
    "9:16": (928, 1664),
    "4:3": (1472, 1140),
    "3:4": (1140, 1472)
}

width, height = aspect_ratios["16:9"]

image = pipe(
    prompt=prompt + positive_magic["en"],
    negative_prompt=negative_prompt,
    width=width,
    height=height,
    num_inference_steps=50,
    true_cfg_scale=4.0,
    generator=torch.Generator(device="cuda").manual_seed(42)
).images[0]

image.save("example.png")</code></pre>
                </div>
            </section>

            <section class="showcase-section">
                <h2>Show Cases</h2>
                
                <div class="showcase-item-full">
                    <div class="showcase-description-full">
                        <h3>Superior Text Rendering</h3>
                        <p>One of its standout capabilities is high-fidelity text rendering across diverse images. Whether it's alphabetic languages like English or logographic scripts like Chinese, Qwen-Image preserves typographic details, layout coherence, and contextual harmony with stunning accuracy. Text isn't just overlaid—it's seamlessly integrated into the visual fabric.</p>
                    </div>
                    <div class="showcase-image-full">
                        <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s1.jpg" alt="Text Rendering Example" class="showcase-img-full">
                    </div>
                </div>

                <div class="showcase-item-full">
                    <div class="showcase-description-full">
                        <h3>Artistic Style Support</h3>
                        <p>Beyond text, Qwen-Image excels at general image generation with support for a wide range of artistic styles. From photorealistic scenes to impressionist paintings, from anime aesthetics to minimalist design, the model adapts fluidly to creative prompts, making it a versatile tool for artists, designers, and storytellers.</p>
                    </div>
                    <div class="showcase-image-full">
                        <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s2.jpg" alt="Artistic Styles Example" class="showcase-img-full">
                    </div>
                </div>

                <div class="showcase-item-full">
                    <div class="showcase-description-full">
                        <h3>Advanced Image Editing</h3>
                        <p>When it comes to image editing, Qwen-Image goes far beyond simple adjustments. It enables advanced operations such as style transfer, object insertion or removal, detail enhancement, text editing within images, and even human pose manipulation—all with intuitive input and coherent output. This level of control brings professional-grade editing within reach of everyday users.</p>
                    </div>
                    <div class="showcase-image-full">
                        <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s3.jpg" alt="Image Editing Example" class="showcase-img-full">
                    </div>
                </div>

                <div class="showcase-item-full">
                    <div class="showcase-description-full">
                        <h3>Image Understanding</h3>
                        <p>But Qwen-Image doesn't just create or edit—it understands. It supports a suite of image understanding tasks, including object detection, semantic segmentation, depth and edge (Canny) estimation, novel view synthesis, and super-resolution. These capabilities, while technically distinct, can all be seen as specialized forms of intelligent image editing, powered by deep visual comprehension.</p>
                    </div>
                    <div class="showcase-image-full">
                        <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s4.jpg" alt="Image Understanding Example" class="showcase-img-full">
                    </div>
                </div>

                <div class="showcase-conclusion">
                    <p>Together, these features make Qwen-Image not just a tool for generating pretty pictures, but a comprehensive foundation model for intelligent visual creation and manipulation—where language, layout, and imagery converge.</p>
                </div>
            </section>

            <div class="resource-links-section">
                <h2>Resources</h2>
                <div class="resource-links">
                    <a href="https://huggingface.co/Qwen/Qwen-Image" target="_blank" rel="noopener noreferrer" class="resource-link">Qwen-Image on Hugging Face</a>
                    <a href="https://github.com/QwenLM/Qwen" target="_blank" rel="noopener noreferrer" class="resource-link">Qwen GitHub</a>
                    <a href="https://www.alibabacloud.com/en/solutions/generative-ai/qwen" target="_blank" rel="noopener noreferrer" class="resource-link">Alibaba Cloud Qwen</a>
                    <a href="https://modelscope.cn/models/qwen/Qwen-Image" target="_blank" rel="noopener noreferrer" class="resource-link">ModelScope</a>
                    <a href="https://help.aliyun.com/zh/dashscope/developer-reference/qwen-vlo-quick-start" target="_blank" rel="noopener noreferrer" class="resource-link">Qwen VLo Documentation</a>
                    <a href="https://www.alibabacloud.com/help/en/model-studio/vision/" target="_blank" rel="noopener noreferrer" class="resource-link">Qwen-VL Documentation</a>
                </div>
            </div>
        </div>
    </div>
</body>
</html>