Update app.py
Browse files
app.py
CHANGED
|
@@ -11,133 +11,96 @@ import numpy as np
|
|
| 11 |
import os
|
| 12 |
import tempfile
|
| 13 |
import uuid
|
| 14 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 15 |
-
import torch.nn as nn
|
| 16 |
-
import torch.cuda.amp # for mixed precision training
|
| 17 |
|
| 18 |
-
|
| 19 |
-
torch.set_float32_matmul_precision("high")
|
| 20 |
-
torch.backends.cudnn.benchmark = True # Enable cudnn autotuner
|
| 21 |
|
| 22 |
-
# Initialize model with optimization flags
|
| 23 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 24 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
)
|
| 26 |
-
birefnet.to("cuda").eval() # Ensure model is in eval mode
|
| 27 |
-
birefnet = torch.jit.script(birefnet) # JIT compilation for faster inference
|
| 28 |
-
|
| 29 |
-
# Pre-compile transforms for better performance
|
| 30 |
-
transform_image = transforms.Compose([
|
| 31 |
-
transforms.Resize((1024, 1024), antialias=True),
|
| 32 |
-
transforms.ToTensor(),
|
| 33 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 34 |
-
])
|
| 35 |
-
|
| 36 |
-
# Increased batch size for better GPU utilization
|
| 37 |
-
BATCH_SIZE = 8 # Increased from 3
|
| 38 |
-
NUM_WORKERS = 4 # For parallel processing
|
| 39 |
-
|
| 40 |
-
# Create a thread pool for parallel processing
|
| 41 |
-
executor = ThreadPoolExecutor(max_workers=NUM_WORKERS)
|
| 42 |
-
|
| 43 |
-
def process_batch(batch_data):
|
| 44 |
-
"""Process a batch of frames in parallel"""
|
| 45 |
-
images, backgrounds, image_sizes = zip(*batch_data)
|
| 46 |
-
|
| 47 |
-
# Stack images for batch processing
|
| 48 |
-
input_tensor = torch.stack(images).to("cuda")
|
| 49 |
-
|
| 50 |
-
# Use automatic mixed precision for faster computation
|
| 51 |
-
with torch.cuda.amp.autocast():
|
| 52 |
-
with torch.no_grad():
|
| 53 |
-
preds = birefnet(input_tensor)[-1].sigmoid().cpu()
|
| 54 |
-
|
| 55 |
-
processed_frames = []
|
| 56 |
-
for pred, bg, size in zip(preds, backgrounds, image_sizes):
|
| 57 |
-
mask = transforms.ToPILImage()(pred.squeeze()).resize(size)
|
| 58 |
-
|
| 59 |
-
if isinstance(bg, str) and bg.startswith("#"):
|
| 60 |
-
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
|
| 61 |
-
background = Image.new("RGBA", size, color_rgb + (255,))
|
| 62 |
-
elif isinstance(bg, Image.Image):
|
| 63 |
-
background = bg.convert("RGBA").resize(size)
|
| 64 |
-
else:
|
| 65 |
-
background = Image.open(bg).convert("RGBA").resize(size)
|
| 66 |
-
|
| 67 |
-
# Use PIL's faster composite operation
|
| 68 |
-
image = Image.composite(images[0].resize(size), background, mask)
|
| 69 |
-
processed_frames.append(np.array(image))
|
| 70 |
-
|
| 71 |
-
return processed_frames
|
| 72 |
|
| 73 |
@spaces.GPU
|
| 74 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
| 75 |
try:
|
| 76 |
-
|
| 77 |
-
video = mp.VideoFileClip(vid, audio_buffersize=2000)
|
| 78 |
if fps == 0:
|
| 79 |
fps = video.fps
|
| 80 |
audio = video.audio
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
# Pre-process background if using video
|
| 87 |
if bg_type == "Video":
|
| 88 |
-
|
| 89 |
-
if
|
| 90 |
if video_handling == "slow_down":
|
| 91 |
-
|
| 92 |
-
factor=video.duration / bg_video_clip.duration)
|
| 93 |
else:
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
yield gr.update(visible=False), gr.update(visible=True)
|
| 139 |
-
yield
|
| 140 |
-
|
| 141 |
except Exception as e:
|
| 142 |
print(f"Error: {e}")
|
| 143 |
yield gr.update(visible=False), gr.update(visible=True)
|
|
|
|
| 11 |
import os
|
| 12 |
import tempfile
|
| 13 |
import uuid
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
torch.set_float32_matmul_precision("highest")
|
|
|
|
|
|
|
| 16 |
|
|
|
|
| 17 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 18 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 19 |
+
).to("cuda")
|
| 20 |
+
transform_image = transforms.Compose(
|
| 21 |
+
[
|
| 22 |
+
transforms.Resize((1024, 1024)),
|
| 23 |
+
transforms.ToTensor(),
|
| 24 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 25 |
+
]
|
| 26 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
@spaces.GPU
|
| 29 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
| 30 |
try:
|
| 31 |
+
video = mp.VideoFileClip(vid)
|
|
|
|
| 32 |
if fps == 0:
|
| 33 |
fps = video.fps
|
| 34 |
audio = video.audio
|
| 35 |
+
frames = video.iter_frames(fps=fps)
|
| 36 |
+
processed_frames = []
|
| 37 |
+
yield gr.update(visible=True), gr.update(visible=False)
|
| 38 |
+
|
|
|
|
|
|
|
| 39 |
if bg_type == "Video":
|
| 40 |
+
background_video = mp.VideoFileClip(bg_video)
|
| 41 |
+
if background_video.duration < video.duration:
|
| 42 |
if video_handling == "slow_down":
|
| 43 |
+
background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration)
|
|
|
|
| 44 |
else:
|
| 45 |
+
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
|
| 46 |
+
background_frames = list(background_video.iter_frames(fps=fps))
|
| 47 |
+
elif bg_type in ["Color", "Image"]:
|
| 48 |
+
# Prepare background once if it's a static image or color
|
| 49 |
+
if bg_type == "Color":
|
| 50 |
+
color_rgb = tuple(int(color[i:i+2], 16) for i in (1, 3, 5))
|
| 51 |
+
background_pil = Image.new("RGBA", (1024, 1024), color_rgb + (255,))
|
| 52 |
+
else: # bg_type == "Image":
|
| 53 |
+
background_pil = Image.open(bg_image).convert("RGBA").resize((1024, 1024))
|
| 54 |
+
background_tensor = transforms.ToTensor(background_pil).to("cuda")
|
| 55 |
+
else:
|
| 56 |
+
background_tensor = None
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
bg_frame_index = 0
|
| 60 |
+
frame_batch = []
|
| 61 |
+
for i, frame in enumerate(frames):
|
| 62 |
+
frame = Image.fromarray(frame)
|
| 63 |
+
frame = transforms.ToTensor(frame).to('cuda')
|
| 64 |
+
frame_batch.append(frame)
|
| 65 |
+
|
| 66 |
+
if len(frame_batch) >= 3 or i == int(video.fps * video.duration) - 1 :
|
| 67 |
+
input_images = torch.stack(frame_batch).to("cuda")
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
preds = birefnet(input_images)[-1].sigmoid()
|
| 70 |
+
for j, pred in enumerate(preds):
|
| 71 |
+
if bg_type == "Video":
|
| 72 |
+
if video_handling == "slow_down":
|
| 73 |
+
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
| 74 |
+
bg_frame_index += 1
|
| 75 |
+
background_image = Image.fromarray(background_frame).resize((1024, 1024))
|
| 76 |
+
background_tensor = transforms.ToTensor(background_image).to("cuda")
|
| 77 |
+
else: # video_handling == "loop"
|
| 78 |
+
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
| 79 |
+
bg_frame_index += 1
|
| 80 |
+
background_image = Image.fromarray(background_frame).resize((1024, 1024))
|
| 81 |
+
background_tensor = transforms.ToTensor(background_image).to("cuda")
|
| 82 |
+
mask = transforms.ToPILImage()(pred.cpu().squeeze())
|
| 83 |
+
processed_image = Image.composite(transforms.ToPILImage()(frame_batch[j].cpu()), transforms.ToPILImage()(background_tensor.cpu()), mask).resize(video.size)
|
| 84 |
+
|
| 85 |
+
processed_frames.append(np.array(processed_image))
|
| 86 |
+
yield processed_image, None
|
| 87 |
+
|
| 88 |
+
frame_batch = []
|
| 89 |
+
|
| 90 |
+
|
| 91 |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
| 92 |
+
processed_video = processed_video.set_audio(audio)
|
| 93 |
+
|
| 94 |
+
temp_dir = "temp"
|
| 95 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 96 |
+
unique_filename = str(uuid.uuid4()) + ".mp4"
|
| 97 |
+
temp_filepath = os.path.join(temp_dir, unique_filename)
|
| 98 |
+
|
| 99 |
+
processed_video.write_videofile(temp_filepath, codec="libx264", logger=None)
|
| 100 |
+
|
| 101 |
yield gr.update(visible=False), gr.update(visible=True)
|
| 102 |
+
yield processed_image, temp_filepath
|
| 103 |
+
|
| 104 |
except Exception as e:
|
| 105 |
print(f"Error: {e}")
|
| 106 |
yield gr.update(visible=False), gr.update(visible=True)
|