Spaces:
Runtime error
Runtime error
File size: 7,355 Bytes
4b8361a c914273 4b8361a 0030bc6 4b8361a 7b37b0e c914273 7b37b0e 4b8361a c914273 0030bc6 c914273 7b37b0e c914273 7b37b0e 0030bc6 c914273 4b8361a c914273 7b37b0e c914273 4b8361a 0030bc6 4b8361a 0030bc6 4b8361a 0030bc6 4b8361a 0030bc6 4b8361a 0030bc6 4b8361a 0030bc6 4b8361a 0030bc6 4b8361a 0030bc6 4b8361a 0030bc6 4b8361a 0030bc6 4b8361a 0030bc6 4b8361a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
import numpy as np
import torchaudio
import yaml
from .utils import calculate_metrics
from preprocessing.pipelines import WaveformPreprocessing, AudioToSpectrogram
# Architecture based on: https://github.com/minzwon/sota-music-tagging-models/blob/36aa13b7205ff156cf4dcab60fd69957da453151/training/model.py
class ResidualDancer(nn.Module):
def __init__(self,n_channels=128, n_classes=50):
super().__init__()
self.n_channels = n_channels
self.n_classes = n_classes
# Spectrogram
self.spec_bn = nn.BatchNorm2d(1)
# CNN
self.res_layers = nn.Sequential(
ResBlock(1, n_channels, stride=2),
ResBlock(n_channels, n_channels, stride=2),
ResBlock(n_channels, n_channels*2, stride=2),
ResBlock(n_channels*2, n_channels*2, stride=2),
ResBlock(n_channels*2, n_channels*2, stride=2),
ResBlock(n_channels*2, n_channels*2, stride=2),
ResBlock(n_channels*2, n_channels*4, stride=2)
)
# Dense
self.dense1 = nn.Linear(n_channels*4, n_channels*4)
self.bn = nn.BatchNorm1d(n_channels*4)
self.dense2 = nn.Linear(n_channels*4, n_classes)
self.dropout = nn.Dropout(0.2)
def forward(self, x):
x = self.spec_bn(x)
# CNN
x = self.res_layers(x)
x = x.squeeze(2)
# Global Max Pooling
if x.size(-1) != 1:
x = nn.MaxPool1d(x.size(-1))(x)
x = x.squeeze(2)
# Dense
x = self.dense1(x)
x = self.bn(x)
x = F.relu(x)
x = self.dropout(x)
x = self.dense2(x)
x = nn.Sigmoid()(x)
return x
class ResBlock(nn.Module):
def __init__(self, input_channels, output_channels, shape=3, stride=2):
super().__init__()
# convolution
self.conv_1 = nn.Conv2d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
self.bn_1 = nn.BatchNorm2d(output_channels)
self.conv_2 = nn.Conv2d(output_channels, output_channels, shape, padding=shape//2)
self.bn_2 = nn.BatchNorm2d(output_channels)
# residual
self.diff = False
if (stride != 1) or (input_channels != output_channels):
self.conv_3 = nn.Conv2d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
self.bn_3 = nn.BatchNorm2d(output_channels)
self.diff = True
self.relu = nn.ReLU()
def forward(self, x):
# convolution
out = self.bn_2(self.conv_2(self.relu(self.bn_1(self.conv_1(x)))))
# residual
if self.diff:
x = self.bn_3(self.conv_3(x))
out = x + out
out = self.relu(out)
return out
class TrainingEnvironment(pl.LightningModule):
def __init__(self, model: nn.Module, criterion: nn.Module, config:dict, learning_rate=1e-4, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model = model
self.criterion = criterion
self.learning_rate = learning_rate
self.config=config
self.save_hyperparameters({
"model": type(model).__name__,
"loss": type(criterion).__name__,
"config": config,
**kwargs
})
def training_step(self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int) -> torch.Tensor:
features, labels = batch
outputs = self.model(features)
loss = self.criterion(outputs, labels)
metrics = calculate_metrics(outputs, labels, prefix="train/", multi_label=True)
self.log_dict(metrics, prog_bar=True)
# Log spectrograms
if batch_index % 100 == 0:
tensorboard = self.logger.experiment
img_index = torch.randint(0, len(features), (1,)).item()
img = features[img_index][0]
img = (img - img.min()) / (img.max() - img.min())
tensorboard.add_image(f"batch: {batch_index}, element: {img_index}", img, 0, dataformats='HW')
return loss
def validation_step(self, batch:tuple[torch.Tensor, torch.TensorType], batch_index:int):
x, y = batch
preds = self.model(x)
metrics = calculate_metrics(preds, y, prefix="val/", multi_label=True)
metrics["val/loss"] = self.criterion(preds, y)
self.log_dict(metrics,prog_bar=True)
def test_step(self, batch:tuple[torch.Tensor, torch.TensorType], batch_index:int):
x, y = batch
preds = self.model(x)
self.log_dict(calculate_metrics(preds, y, prefix="test/", multi_label=True), prog_bar=True)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min') {"scheduler": scheduler, "monitor": "val/loss"}
return [optimizer]
class DancePredictor:
def __init__(
self,
weight_path:str,
labels:list[str],
expected_duration=6,
threshold=0.5,
resample_frequency=16000,
device="cpu"):
super().__init__()
self.expected_duration = expected_duration
self.threshold = threshold
self.resample_frequency = resample_frequency
self.preprocess_waveform = WaveformPreprocessing(resample_frequency * expected_duration)
self.audio_to_spectrogram = AudioToSpectrogram(resample_frequency)
self.labels = np.array(labels)
self.device = device
self.model = self.get_model(weight_path)
def get_model(self, weight_path:str) -> nn.Module:
weights = torch.load(weight_path, map_location=self.device)["state_dict"]
model = ResidualDancer(n_classes=len(self.labels))
for key in list(weights):
weights[key.replace("model.", "")] = weights.pop(key)
model.load_state_dict(weights)
return model.to(self.device).eval()
@classmethod
def from_config(cls, config_path:str) -> "DancePredictor":
with open(config_path, "r") as f:
config = yaml.safe_load(f)
return DancePredictor(**config)
@torch.no_grad()
def __call__(self, waveform: np.ndarray, sample_rate:int) -> dict[str,float]:
if len(waveform.shape) > 1 and waveform.shape[1] < waveform.shape[0]:
waveform = waveform.transpose(1,0)
elif len(waveform.shape) == 1:
waveform = np.expand_dims(waveform, 0)
waveform = torch.from_numpy(waveform.astype("int16"))
waveform = torchaudio.functional.apply_codec(waveform,sample_rate, "wav", channels_first=True)
waveform = torchaudio.functional.resample(waveform, sample_rate,self.resample_frequency)
waveform = self.preprocess_waveform(waveform)
spectrogram = self.audio_to_spectrogram(waveform)
spectrogram = spectrogram.unsqueeze(0).to(self.device)
results = self.model(spectrogram)
results = results.squeeze(0).detach().cpu().numpy()
result_mask = results > self.threshold
probs = results[result_mask]
dances = self.labels[result_mask]
return {dance:float(prob) for dance, prob in zip(dances, probs)}
|