Spaces:
Running
on
Zero
Running
on
Zero
提前加载lora
Browse files
app.py
CHANGED
|
@@ -32,14 +32,12 @@ pipe = FluxPipeline.from_pretrained(
|
|
| 32 |
set_single_lora(pipe.transformer, omni_consistency_path,
|
| 33 |
lora_weights=[1], cond_size=512)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
def download_all_loras():
|
| 36 |
-
lora_names = [
|
| 37 |
-
"3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
|
| 38 |
-
"Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
|
| 39 |
-
"Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
|
| 40 |
-
"Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
|
| 41 |
-
"Snoopy", "Van_Gogh", "Vector"
|
| 42 |
-
]
|
| 43 |
for name in lora_names:
|
| 44 |
hf_hub_download(
|
| 45 |
repo_id="showlab/OmniConsistency",
|
|
@@ -48,15 +46,23 @@ def download_all_loras():
|
|
| 48 |
)
|
| 49 |
download_all_loras()
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
def clear_cache(transformer):
|
| 52 |
for _, attn_processor in transformer.attn_processors.items():
|
| 53 |
attn_processor.bank_kv.clear()
|
| 54 |
|
| 55 |
@spaces.GPU()
|
| 56 |
def generate_image(
|
| 57 |
-
lora_name,
|
| 58 |
-
custom_repo_id,
|
| 59 |
-
custom_weight_name,
|
| 60 |
prompt,
|
| 61 |
uploaded_image,
|
| 62 |
width, height,
|
|
@@ -65,31 +71,9 @@ def generate_image(
|
|
| 65 |
seed
|
| 66 |
):
|
| 67 |
width, height = int(width), int(height)
|
| 68 |
-
generator = torch.Generator("cpu").manual_seed(seed)
|
| 69 |
-
|
| 70 |
-
if custom_repo_id and custom_repo_id.strip():
|
| 71 |
-
repo_id = custom_repo_id.strip()
|
| 72 |
-
try:
|
| 73 |
-
lora_path = hf_hub_download(
|
| 74 |
-
repo_id=repo_id,
|
| 75 |
-
filename=custom_weight_name,
|
| 76 |
-
local_dir=CUSTOM_LORA_DIR,
|
| 77 |
-
)
|
| 78 |
-
except Exception as e:
|
| 79 |
-
raise gr.Error(f"Load custom LoRA failed: {e}")
|
| 80 |
-
else:
|
| 81 |
-
lora_path = os.path.join(
|
| 82 |
-
f"{LOCAL_LORA_DIR}/LoRAs", f"{lora_name}_rank128_bf16.safetensors"
|
| 83 |
-
)
|
| 84 |
|
| 85 |
-
pipe.
|
| 86 |
-
try:
|
| 87 |
-
pipe.load_lora_weights(
|
| 88 |
-
os.path.dirname(lora_path),
|
| 89 |
-
weight_name=os.path.basename(lora_path)
|
| 90 |
-
)
|
| 91 |
-
except Exception as e:
|
| 92 |
-
raise gr.Error(f"Load LoRA failed: {e}")
|
| 93 |
|
| 94 |
spatial_image = [uploaded_image.convert("RGB")]
|
| 95 |
subject_images = []
|
|
@@ -113,16 +97,9 @@ def generate_image(
|
|
| 113 |
|
| 114 |
# =============== Gradio UI ===============
|
| 115 |
def create_interface():
|
| 116 |
-
demo_lora_names = [
|
| 117 |
-
"3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
|
| 118 |
-
"Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
|
| 119 |
-
"Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
|
| 120 |
-
"Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
|
| 121 |
-
"Snoopy", "Van_Gogh", "Vector"
|
| 122 |
-
]
|
| 123 |
|
| 124 |
def update_trigger_word(lora_name, prompt):
|
| 125 |
-
for name in
|
| 126 |
trigger = " ".join(name.split("_")) + " style,"
|
| 127 |
prompt = prompt.replace(trigger, "")
|
| 128 |
new_trigger = " ".join(lora_name.split("_"))+ " style,"
|
|
|
|
| 32 |
set_single_lora(pipe.transformer, omni_consistency_path,
|
| 33 |
lora_weights=[1], cond_size=512)
|
| 34 |
|
| 35 |
+
lora_names = [
|
| 36 |
+
"3D_Chibi", "American_Cartoon", "Macaron",
|
| 37 |
+
"Pixel", "Poly", "Van_Gogh"
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
def download_all_loras():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
for name in lora_names:
|
| 42 |
hf_hub_download(
|
| 43 |
repo_id="showlab/OmniConsistency",
|
|
|
|
| 46 |
)
|
| 47 |
download_all_loras()
|
| 48 |
|
| 49 |
+
def reload_all_loras():
|
| 50 |
+
pipe.unload_lora_weights()
|
| 51 |
+
for name in lora_names:
|
| 52 |
+
pipe.load_lora_weights(
|
| 53 |
+
"./LoRAs",
|
| 54 |
+
weight_name=f"{name}_rank128_bf16.safetensors",
|
| 55 |
+
adapter_name=name,
|
| 56 |
+
)
|
| 57 |
+
reload_all_loras()
|
| 58 |
+
|
| 59 |
def clear_cache(transformer):
|
| 60 |
for _, attn_processor in transformer.attn_processors.items():
|
| 61 |
attn_processor.bank_kv.clear()
|
| 62 |
|
| 63 |
@spaces.GPU()
|
| 64 |
def generate_image(
|
| 65 |
+
lora_name,
|
|
|
|
|
|
|
| 66 |
prompt,
|
| 67 |
uploaded_image,
|
| 68 |
width, height,
|
|
|
|
| 71 |
seed
|
| 72 |
):
|
| 73 |
width, height = int(width), int(height)
|
| 74 |
+
generator = torch.Generator("cpu").manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
pipe.set_adapters(lora_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
spatial_image = [uploaded_image.convert("RGB")]
|
| 79 |
subject_images = []
|
|
|
|
| 97 |
|
| 98 |
# =============== Gradio UI ===============
|
| 99 |
def create_interface():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
def update_trigger_word(lora_name, prompt):
|
| 102 |
+
for name in lora_names:
|
| 103 |
trigger = " ".join(name.split("_")) + " style,"
|
| 104 |
prompt = prompt.replace(trigger, "")
|
| 105 |
new_trigger = " ".join(lora_name.split("_"))+ " style,"
|