PommesPeter commited on
Commit
18b4aea
·
verified ·
1 Parent(s): 8236505

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -34,8 +34,7 @@ from PIL import Image
34
  from safetensors.torch import load_file
35
 
36
  import models
37
-
38
- from lumina_t2i.transport import create_transport, Sampler
39
 
40
  print(f"Is CUDA available: {torch.cuda.is_available()}")
41
  print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
@@ -46,6 +45,8 @@ description = """
46
  #### Lumina-Next-T2I is a 2B `Next-DiT` model with `Gemma-2B` text encoder.
47
 
48
  #### Demo current model: `Lumina-Next-T2I`
 
 
49
 
50
  """
51
  hf_token = os.environ["HF_TOKEN"]
@@ -445,7 +446,7 @@ def main():
445
  num_sampling_steps = gr.Slider(
446
  minimum=1,
447
  maximum=70,
448
- value=30,
449
  step=1,
450
  interactive=True,
451
  label="Sampling steps",
 
34
  from safetensors.torch import load_file
35
 
36
  import models
37
+ from transport import create_transport, Sampler
 
38
 
39
  print(f"Is CUDA available: {torch.cuda.is_available()}")
40
  print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
 
45
  #### Lumina-Next-T2I is a 2B `Next-DiT` model with `Gemma-2B` text encoder.
46
 
47
  #### Demo current model: `Lumina-Next-T2I`
48
+
49
+ #### Lumina-Next supports higher-order solvers. <span style='color: orange;'>It can generate images with merely 10 steps without any distillation.
50
 
51
  """
52
  hf_token = os.environ["HF_TOKEN"]
 
446
  num_sampling_steps = gr.Slider(
447
  minimum=1,
448
  maximum=70,
449
+ value=10,
450
  step=1,
451
  interactive=True,
452
  label="Sampling steps",