import spaces import gradio as gr import numpy as np import PIL.Image from PIL import Image import random from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch from compel import Compel, ReturnedEmbeddingsType device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Make sure to use torch.float16 consistently throughout the pipeline pipe = StableDiffusionXLPipeline.from_pretrained( "votepurchase/waiREALMIX_v11", torch_dtype=torch.float16, variant="fp16", # Explicitly use fp16 variant use_safetensors=True # Use safetensors if available ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(device) # Force all components to use the same dtype pipe.text_encoder.to(torch.float16) pipe.text_encoder_2.to(torch.float16) pipe.vae.to(torch.float16) pipe.unet.to(torch.float16) # 追加: Initialize Compel for long prompt processing compel = Compel( tokenizer=[pipe.tokenizer, pipe.tokenizer_2], text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True], truncate_long_prompts=False ) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1216 # 追加: Simple long prompt processing function def process_long_prompt(prompt, negative_prompt=""): """Simple long prompt processing using Compel""" try: conditioning, pooled = compel([prompt, negative_prompt]) return conditioning, pooled except Exception as e: print(f"Long prompt processing failed: {e}, falling back to standard processing") return None, None @spaces.GPU def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): # 変更: Remove the 60-word limit warning and add long prompt check use_long_prompt = len(prompt.split()) > 60 or len(prompt) > 300 if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) try: # 追加: Try long prompt processing first if prompt is long if use_long_prompt: print("Using long prompt processing...") conditioning, pooled = process_long_prompt(prompt, negative_prompt) if conditioning is not None: output_image = pipe( prompt_embeds=conditioning[0:1], pooled_prompt_embeds=pooled[0:1], negative_prompt_embeds=conditioning[1:2], negative_pooled_prompt_embeds=pooled[1:2], guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] return output_image # Fall back to standard processing output_image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] return output_image except RuntimeError as e: print(f"Error during generation: {e}") # Return a blank image with error message error_img = Image.new('RGB', (width, height), color=(0, 0, 0)) return error_img css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt (long prompts are automatically supported)", # 変更: Updated placeholder container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn" ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=28, step=1, value=28, ) run_button.click( fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result] ) demo.queue().launch()