Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,019 Bytes
135fefd 47b567f 652d2bd 3d8e9a7 652d2bd 126c369 47b567f 652d2bd 3d8e9a7 652d2bd 3d8e9a7 652d2bd 3d8e9a7 652d2bd 3d8e9a7 126c369 652d2bd 126c369 652d2bd 126c369 652d2bd 3d8e9a7 126c369 3d8e9a7 652d2bd 126c369 652d2bd 3d8e9a7 652d2bd 3d8e9a7 652d2bd 3d8e9a7 652d2bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
from compel import Compel, ReturnedEmbeddingsType
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Make sure to use torch.float16 consistently throughout the pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"votepurchase/waiREALMIX_v11",
torch_dtype=torch.float16,
variant="fp16", # Explicitly use fp16 variant
use_safetensors=True # Use safetensors if available
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
# Force all components to use the same dtype
pipe.text_encoder.to(torch.float16)
pipe.text_encoder_2.to(torch.float16)
pipe.vae.to(torch.float16)
pipe.unet.to(torch.float16)
# 追加: Initialize Compel for long prompt processing
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
truncate_long_prompts=False
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
# 追加: Simple long prompt processing function
def process_long_prompt(prompt, negative_prompt=""):
"""Simple long prompt processing using Compel"""
try:
conditioning, pooled = compel([prompt, negative_prompt])
return conditioning, pooled
except Exception as e:
print(f"Long prompt processing failed: {e}, falling back to standard processing")
return None, None
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
# 変更: Remove the 60-word limit warning and add long prompt check
use_long_prompt = len(prompt.split()) > 60 or len(prompt) > 300
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
# 追加: Try long prompt processing first if prompt is long
if use_long_prompt:
print("Using long prompt processing...")
conditioning, pooled = process_long_prompt(prompt, negative_prompt)
if conditioning is not None:
output_image = pipe(
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return output_image
# Fall back to standard processing
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return output_image
except RuntimeError as e:
print(f"Error during generation: {e}")
# Return a blank image with error message
error_img = Image.new('RGB', (width, height), color=(0, 0, 0))
return error_img
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (long prompts are automatically supported)", # 変更: Updated placeholder
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=28,
step=1,
value=28,
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch() |