File size: 6,019 Bytes
135fefd
47b567f
652d2bd
 
 
 
3d8e9a7
 
652d2bd
126c369
47b567f
652d2bd
 
3d8e9a7
652d2bd
3d8e9a7
652d2bd
3d8e9a7
 
652d2bd
 
 
 
 
3d8e9a7
 
 
 
 
 
126c369
 
 
 
 
 
 
 
 
652d2bd
 
126c369
 
 
 
 
 
 
 
 
 
652d2bd
 
 
126c369
 
 
652d2bd
 
 
3d8e9a7
 
 
126c369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d8e9a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652d2bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126c369
652d2bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d8e9a7
652d2bd
 
 
 
 
 
 
3d8e9a7
652d2bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d8e9a7
652d2bd
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import spaces
import gradio as gr
import numpy as np
import PIL.Image
from PIL import Image
import random
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
from compel import Compel, ReturnedEmbeddingsType

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Make sure to use torch.float16 consistently throughout the pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
    "votepurchase/waiREALMIX_v11",
    torch_dtype=torch.float16,
    variant="fp16",  # Explicitly use fp16 variant
    use_safetensors=True  # Use safetensors if available
)

pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)

# Force all components to use the same dtype
pipe.text_encoder.to(torch.float16)
pipe.text_encoder_2.to(torch.float16)
pipe.vae.to(torch.float16)
pipe.unet.to(torch.float16)

# 追加: Initialize Compel for long prompt processing
compel = Compel(
    tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
    text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
    returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
    requires_pooled=[False, True],
    truncate_long_prompts=False
)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

# 追加: Simple long prompt processing function
def process_long_prompt(prompt, negative_prompt=""):
    """Simple long prompt processing using Compel"""
    try:
        conditioning, pooled = compel([prompt, negative_prompt])
        return conditioning, pooled
    except Exception as e:
        print(f"Long prompt processing failed: {e}, falling back to standard processing")
        return None, None
    
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    # 変更: Remove the 60-word limit warning and add long prompt check
    use_long_prompt = len(prompt.split()) > 60 or len(prompt) > 300
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)
    
    try:
        # 追加: Try long prompt processing first if prompt is long
        if use_long_prompt:
            print("Using long prompt processing...")
            conditioning, pooled = process_long_prompt(prompt, negative_prompt)
            
            if conditioning is not None:
                output_image = pipe(
                    prompt_embeds=conditioning[0:1],
                    pooled_prompt_embeds=pooled[0:1],
                    negative_prompt_embeds=conditioning[1:2],
                    negative_pooled_prompt_embeds=pooled[1:2],
                    guidance_scale=guidance_scale,
                    num_inference_steps=num_inference_steps,
                    width=width,
                    height=height,
                    generator=generator
                ).images[0]
                return output_image
        
        # Fall back to standard processing
        output_image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator
        ).images[0]
        
        return output_image
    except RuntimeError as e:
        print(f"Error during generation: {e}")
        # Return a blank image with error message
        error_img = Image.new('RGB', (width, height), color=(0, 0, 0))
        return error_img


css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt (long prompts are automatically supported)",  # 変更: Updated placeholder
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):

            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=7,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=28,
                    step=1,
                    value=28,
                )

    run_button.click(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch()