import gradio as gr from gradio import ChatMessage from utils import stream_from_transformers_agent from gradio.context import Context from gradio import Request import pickle import os from dotenv import load_dotenv from agent import get_agent, DEFAULT_TASK_SOLVING_TOOLBOX from transformers.agents import ( DuckDuckGoSearchTool, ImageQuestionAnsweringTool, VisitWebpageTool, ) from tools.text_to_image import TextToImageTool from transformers import load_tool from prompts import ( DEFAULT_SQUAD_REACT_CODE_SYSTEM_PROMPT, FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT, ) from pygments.formatters import HtmlFormatter load_dotenv() SESSION_PERSISTENCE_ENABLED = os.getenv("SESSION_PERSISTENCE_ENABLED", False) sessions_path = "sessions.pkl" sessions = ( pickle.load(open(sessions_path, "rb")) if SESSION_PERSISTENCE_ENABLED and os.path.exists(sessions_path) else {} ) # If currently hosted on HuggingFace Spaces, use the default model, otherwise use the local model model_name = ( "meta-llama/Meta-Llama-3.1-8B-Instruct" if os.getenv("SPACE_ID") is not None else "http://localhost:1234/v1" ) image_qa_tool = ImageQuestionAnsweringTool() image_qa_tool.inputs = { "image": { "type": "image", "description": "The image containing the information. It must be a PIL Image.", }, "question": {"type": "string", "description": "The question in English"}, } ADDITIONAL_TOOLS = [ DuckDuckGoSearchTool(), VisitWebpageTool(), ImageQuestionAnsweringTool(), load_tool("speech_to_text"), load_tool("text_to_speech"), load_tool("translation"), TextToImageTool(), ] # Add image tools to the default task solving toolbox, for a more visually interactive experience TASK_SOLVING_TOOLBOX = DEFAULT_TASK_SOLVING_TOOLBOX + ADDITIONAL_TOOLS # system_prompt = DEFAULT_SQUAD_REACT_CODE_SYSTEM_PROMPT system_prompt = FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT agent = get_agent( model_name=model_name, toolbox=TASK_SOLVING_TOOLBOX, system_prompt=system_prompt, use_openai=True, # Use OpenAI instead of a local or HF model as the base LLM engine ) app = None def append_example_message(x: gr.SelectData, messages): if x.value["text"] is not None: message = x.value["text"] if "files" in x.value: if isinstance(x.value["files"], list): message = "Here are the files: " for file in x.value["files"]: message += f"{file}, " else: message = x.value["files"] messages.append(ChatMessage(role="user", content=message)) return messages def add_message(message, messages): messages.append(ChatMessage(role="user", content=message)) return messages def interact_with_agent(messages, request: Request): session_hash = request.session_hash prompt = messages[-1]["content"] agent.logs = sessions.get(session_hash + "_logs", []) yield messages, gr.update( value="

Thinking...

", visible=True ) for msg in stream_from_transformers_agent(agent, prompt): if isinstance(msg, ChatMessage): messages.append(msg) yield messages, gr.update(visible=True) else: yield messages, gr.update( value=f"

{msg}

", visible=True ) yield messages, gr.update(value="

Idle

", visible=False) def persist(component): def resume_session(value, request: Request): session_hash = request.session_hash print(f"Resuming session for {session_hash}") state = sessions.get(session_hash, value) agent.logs = sessions.get(session_hash + "_logs", []) return state def update_session(value, request: Request): session_hash = request.session_hash print(f"Updating persisted session state for {session_hash}") sessions[session_hash] = value sessions[session_hash + "_logs"] = agent.logs if SESSION_PERSISTENCE_ENABLED: pickle.dump(sessions, open(sessions_path, "wb")) Context.root_block.load(resume_session, inputs=[component], outputs=component) component.change(update_session, inputs=[component], outputs=None) return component from gradio.components import ( Component as GradioComponent, ) from gradio.components.chatbot import ( Chatbot, FileDataDict, FileData, ComponentMessage, FileMessage, ) class CleanChatBot(Chatbot): def __init__(self, **kwargs): super().__init__(**kwargs) def _postprocess_content( self, chat_message: ( str | tuple | list | FileDataDict | FileData | GradioComponent | None ), ) -> str | FileMessage | ComponentMessage | None: response = super()._postprocess_content(chat_message) print(f"Post processing content: {response}") if isinstance(response, ComponentMessage): print(f"Setting open to False for {response}") response.props["open"] = False return response with gr.Blocks( fill_height=True, css=".gradio-container .message .content {text-align: left;}" + HtmlFormatter().get_style_defs(".highlight"), ) as demo: state = gr.State() inner_monologue_component = gr.Markdown( """

Inner Monologue

""", visible=False ) chatbot = persist( gr.Chatbot( value=[], label="SQuAD Agent", type="messages", avatar_images=( None, "SQuAD.png", ), scale=1, autoscroll=True, show_copy_all_button=True, show_copy_button=True, placeholder="""

SQuAD Agent

I am your friendly guide to the Stanford Question and Answer Dataset (SQuAD).

You can ask me questions about the dataset. You can also ask me to create images to help illustrate the topics under discussion, or expand the discussion beyond the dataset.

""", examples=[ { "text": "What is on top of the Notre Dame building?", }, { "text": "Tell me what's on top of the Notre Dame building, and draw a picture of it.", }, { "text": "Draw a picture of whatever is on top of the Notre Dame building.", }, ], ) ) text_input = gr.Textbox(lines=1, label="Chat Message", scale=0) chat_msg = text_input.submit(add_message, [text_input, chatbot], [chatbot]) bot_msg = chat_msg.then( interact_with_agent, [chatbot], [chatbot, inner_monologue_component] ) text_input.submit(lambda: "", None, text_input) chatbot.example_select(append_example_message, [chatbot], [chatbot]).then( interact_with_agent, [chatbot], [chatbot, inner_monologue_component] ) if __name__ == "__main__": demo.launch()