import gradio as gr
from gradio import ChatMessage
from utils import stream_from_transformers_agent
from gradio.context import Context
from gradio import Request
import pickle
import os
from dotenv import load_dotenv
from agent import get_agent, DEFAULT_TASK_SOLVING_TOOLBOX
from transformers.agents import (
DuckDuckGoSearchTool,
ImageQuestionAnsweringTool,
VisitWebpageTool,
)
from tools.text_to_image import TextToImageTool
from transformers import load_tool
from prompts import (
DEFAULT_SQUAD_REACT_CODE_SYSTEM_PROMPT,
FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT,
)
from pygments.formatters import HtmlFormatter
load_dotenv()
SESSION_PERSISTENCE_ENABLED = os.getenv("SESSION_PERSISTENCE_ENABLED", False)
sessions_path = "sessions.pkl"
sessions = (
pickle.load(open(sessions_path, "rb"))
if SESSION_PERSISTENCE_ENABLED and os.path.exists(sessions_path)
else {}
)
# If currently hosted on HuggingFace Spaces, use the default model, otherwise use the local model
model_name = (
"meta-llama/Meta-Llama-3.1-8B-Instruct"
if os.getenv("SPACE_ID") is not None
else "http://localhost:1234/v1"
)
image_qa_tool = ImageQuestionAnsweringTool()
image_qa_tool.inputs = {
"image": {
"type": "image",
"description": "The image containing the information. It must be a PIL Image.",
},
"question": {"type": "string", "description": "The question in English"},
}
ADDITIONAL_TOOLS = [
DuckDuckGoSearchTool(),
VisitWebpageTool(),
ImageQuestionAnsweringTool(),
load_tool("speech_to_text"),
load_tool("text_to_speech"),
load_tool("translation"),
TextToImageTool(),
]
# Add image tools to the default task solving toolbox, for a more visually interactive experience
TASK_SOLVING_TOOLBOX = DEFAULT_TASK_SOLVING_TOOLBOX + ADDITIONAL_TOOLS
# system_prompt = DEFAULT_SQUAD_REACT_CODE_SYSTEM_PROMPT
system_prompt = FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT
agent = get_agent(
model_name=model_name,
toolbox=TASK_SOLVING_TOOLBOX,
system_prompt=system_prompt,
use_openai=True, # Use OpenAI instead of a local or HF model as the base LLM engine
)
app = None
def append_example_message(x: gr.SelectData, messages):
if x.value["text"] is not None:
message = x.value["text"]
if "files" in x.value:
if isinstance(x.value["files"], list):
message = "Here are the files: "
for file in x.value["files"]:
message += f"{file}, "
else:
message = x.value["files"]
messages.append(ChatMessage(role="user", content=message))
return messages
def add_message(message, messages):
messages.append(ChatMessage(role="user", content=message))
return messages
def interact_with_agent(messages, request: Request):
session_hash = request.session_hash
prompt = messages[-1]["content"]
agent.logs = sessions.get(session_hash + "_logs", [])
yield messages, gr.update(
value="
Thinking...
", visible=True
)
for msg in stream_from_transformers_agent(agent, prompt):
if isinstance(msg, ChatMessage):
messages.append(msg)
yield messages, gr.update(visible=True)
else:
yield messages, gr.update(
value=f"{msg}
", visible=True
)
yield messages, gr.update(value="Idle
", visible=False)
def persist(component):
def resume_session(value, request: Request):
session_hash = request.session_hash
print(f"Resuming session for {session_hash}")
state = sessions.get(session_hash, value)
agent.logs = sessions.get(session_hash + "_logs", [])
return state
def update_session(value, request: Request):
session_hash = request.session_hash
print(f"Updating persisted session state for {session_hash}")
sessions[session_hash] = value
sessions[session_hash + "_logs"] = agent.logs
if SESSION_PERSISTENCE_ENABLED:
pickle.dump(sessions, open(sessions_path, "wb"))
Context.root_block.load(resume_session, inputs=[component], outputs=component)
component.change(update_session, inputs=[component], outputs=None)
return component
from gradio.components import (
Component as GradioComponent,
)
from gradio.components.chatbot import (
Chatbot,
FileDataDict,
FileData,
ComponentMessage,
FileMessage,
)
class CleanChatBot(Chatbot):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def _postprocess_content(
self,
chat_message: (
str | tuple | list | FileDataDict | FileData | GradioComponent | None
),
) -> str | FileMessage | ComponentMessage | None:
response = super()._postprocess_content(chat_message)
print(f"Post processing content: {response}")
if isinstance(response, ComponentMessage):
print(f"Setting open to False for {response}")
response.props["open"] = False
return response
with gr.Blocks(
fill_height=True,
css=".gradio-container .message .content {text-align: left;}"
+ HtmlFormatter().get_style_defs(".highlight"),
) as demo:
state = gr.State()
inner_monologue_component = gr.Markdown(
"""Inner Monologue
""", visible=False
)
chatbot = persist(
gr.Chatbot(
value=[],
label="SQuAD Agent",
type="messages",
avatar_images=(
None,
"SQuAD.png",
),
scale=1,
autoscroll=True,
show_copy_all_button=True,
show_copy_button=True,
placeholder="""SQuAD Agent
I am your friendly guide to the Stanford Question and Answer Dataset (SQuAD).
You can ask me questions about the dataset. You can also ask me to create images
to help illustrate the topics under discussion, or expand the discussion beyond the dataset.
""",
examples=[
{
"text": "What is on top of the Notre Dame building?",
},
{
"text": "Tell me what's on top of the Notre Dame building, and draw a picture of it.",
},
{
"text": "Draw a picture of whatever is on top of the Notre Dame building.",
},
],
)
)
text_input = gr.Textbox(lines=1, label="Chat Message", scale=0)
chat_msg = text_input.submit(add_message, [text_input, chatbot], [chatbot])
bot_msg = chat_msg.then(
interact_with_agent, [chatbot], [chatbot, inner_monologue_component]
)
text_input.submit(lambda: "", None, text_input)
chatbot.example_select(append_example_message, [chatbot], [chatbot]).then(
interact_with_agent, [chatbot], [chatbot, inner_monologue_component]
)
if __name__ == "__main__":
demo.launch()