File size: 7,810 Bytes
60d9d3a 8e43a1d 7b4ec76 60d9d3a 5ea745b be5ca66 5ea745b 58282f8 be5ca66 c694655 be5ca66 60d9d3a be5ca66 7b4ec76 5ea745b be5ca66 5ea745b 7b4ec76 5adb1e9 5ea745b 5adb1e9 f4644e9 58282f8 424fe1e f4644e9 be5ca66 58282f8 be5ca66 5ea745b be5ca66 5ea745b f4644e9 e1ed8d0 be5ca66 424fe1e c694655 be5ca66 60d9d3a 5ea745b 60d9d3a 5ea745b 8e43a1d 1742d80 5ea745b 1742d80 424fe1e 60d9d3a be5ca66 424fe1e be5ca66 424fe1e 60d9d3a 5ea745b 8e43a1d 1742d80 8e43a1d 1742d80 be5ca66 8e43a1d be5ca66 8e43a1d c694655 e1ed8d0 c694655 e1ed8d0 c694655 e1ed8d0 5ea745b c694655 424fe1e be5ca66 424fe1e 5ea745b e1ed8d0 5ea745b 7b4ec76 e1ed8d0 7b4ec76 5ea745b f4644e9 5ea745b 60d9d3a 424fe1e 60d9d3a be5ca66 60d9d3a 1742d80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
from gradio import ChatMessage
from utils import stream_from_transformers_agent
from gradio.context import Context
from gradio import Request
import pickle
import os
from dotenv import load_dotenv
from agent import get_agent, DEFAULT_TASK_SOLVING_TOOLBOX
from transformers.agents import (
DuckDuckGoSearchTool,
ImageQuestionAnsweringTool,
VisitWebpageTool,
)
from tools.text_to_image import TextToImageTool
from PIL import Image
from transformers import load_tool
from prompts import (
DEFAULT_SQUAD_REACT_CODE_SYSTEM_PROMPT,
FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT,
)
from pygments.formatters import HtmlFormatter
load_dotenv()
SESSION_PERSISTENCE_ENABLED = os.getenv("SESSION_PERSISTENCE_ENABLED", False)
sessions_path = "sessions.pkl"
sessions = (
pickle.load(open(sessions_path, "rb"))
if SESSION_PERSISTENCE_ENABLED and os.path.exists(sessions_path)
else {}
)
# If currently hosted on HuggingFace Spaces, use the default model, otherwise use the local model
model_name = (
"meta-llama/Meta-Llama-3.1-8B-Instruct"
if os.getenv("SPACE_ID") is not None
else "http://localhost:1234/v1"
)
"""
The ImageQuestionAnsweringTool from Transformers Agents 2.0 has a bug where
it said it accepts the path to an image, but it does not.
This class uses the adapter pattern to fix the issue, in a way that may be
compatible with future versions of the tool even if the bug is fixed.
"""
class FixImageQuestionAnsweringTool(ImageQuestionAnsweringTool):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def encode(self, image: "Image | str", question: str):
if isinstance(image, str):
image = Image.open(image)
return super().encode(image, question)
"""
The app version of the agent has access to additional tools that are not available
during benchmarking. We chose this approach to focus benchmarking on the agent's
ability to solve questions about the SQuAD dataset, without the help of general
knowledge available on the web. For the purposes of the project, the demo
app has access to additional tools to provide a more interactive and engaging experience.
"""
ADDITIONAL_TOOLS = [
DuckDuckGoSearchTool(),
VisitWebpageTool(),
FixImageQuestionAnsweringTool(),
load_tool("speech_to_text"),
load_tool("text_to_speech"),
load_tool("translation"),
TextToImageTool(),
]
# Add image tools to the default task solving toolbox, for a more visually interactive experience
TASK_SOLVING_TOOLBOX = DEFAULT_TASK_SOLVING_TOOLBOX + ADDITIONAL_TOOLS
# Using the focused prompt, which was the top-performing prompt during benchmarking
system_prompt = FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT
agent = get_agent(
model_name=model_name,
toolbox=TASK_SOLVING_TOOLBOX,
system_prompt=system_prompt,
use_openai=True, # Use OpenAI instead of a local or HF model as the base LLM engine
)
def append_example_message(x: gr.SelectData, messages):
if x.value["text"] is not None:
message = x.value["text"]
if "files" in x.value:
if isinstance(x.value["files"], list):
message = "Here are the files: "
for file in x.value["files"]:
message += f"{file}, "
else:
message = x.value["files"]
messages.append(ChatMessage(role="user", content=message))
return messages
def add_message(message, messages):
messages.append(ChatMessage(role="user", content=message))
return messages
def interact_with_agent(messages, request: Request):
session_hash = request.session_hash
prompt = messages[-1]["content"]
agent.logs = sessions.get(session_hash + "_logs", [])
yield messages, gr.update(
value="<center><h1>Thinking...</h1></center>", visible=True
)
for msg in stream_from_transformers_agent(agent, prompt):
if isinstance(msg, ChatMessage):
messages.append(msg)
yield messages, gr.update(visible=True)
else:
yield messages, gr.update(
value=f"<center><h1>{msg}</h1></center>", visible=True
)
yield messages, gr.update(value="<center><h1>Idle</h1></center>", visible=False)
def persist(component):
def resume_session(value, request: Request):
session_hash = request.session_hash
print(f"Resuming session for {session_hash}")
state = sessions.get(session_hash, value)
agent.logs = sessions.get(session_hash + "_logs", [])
return state
def update_session(value, request: Request):
session_hash = request.session_hash
print(f"Updating persisted session state for {session_hash}")
sessions[session_hash] = value
sessions[session_hash + "_logs"] = agent.logs
if SESSION_PERSISTENCE_ENABLED:
pickle.dump(sessions, open(sessions_path, "wb"))
Context.root_block.load(resume_session, inputs=[component], outputs=component)
component.change(update_session, inputs=[component], outputs=None)
return component
from gradio.components import (
Component as GradioComponent,
)
from gradio.components.chatbot import (
Chatbot,
FileDataDict,
FileData,
ComponentMessage,
FileMessage,
)
class CleanChatBot(Chatbot):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def _postprocess_content(
self,
chat_message: (
str | tuple | list | FileDataDict | FileData | GradioComponent | None
),
) -> str | FileMessage | ComponentMessage | None:
response = super()._postprocess_content(chat_message)
print(f"Post processing content: {response}")
if isinstance(response, ComponentMessage):
print(f"Setting open to False for {response}")
response.props["open"] = False
return response
with gr.Blocks(
fill_height=True,
css=".gradio-container .message .content {text-align: left;}"
+ HtmlFormatter().get_style_defs(".highlight"),
) as demo:
state = gr.State()
inner_monologue_component = gr.Markdown(
"""<h2>Inner Monologue</h2>""", visible=False
)
chatbot = persist(
gr.Chatbot(
value=[],
label="SQuAD Agent",
type="messages",
avatar_images=(
None,
"SQuAD.png",
),
scale=1,
autoscroll=True,
show_copy_all_button=True,
show_copy_button=True,
placeholder="""<h1>SQuAD Agent</h1>
<h2>I am your friendly guide to the Stanford Question and Answer Dataset (SQuAD).</h2>
<h2>You can ask me questions about the dataset. You can also ask me to create images
to help illustrate the topics under discussion, or expand the discussion beyond the dataset.</h2>
""",
examples=[
{
"text": "What is on top of the Notre Dame building?",
},
{
"text": "What is the Olympic Torch made of?",
},
{
"text": "Draw a picture of whatever is on top of the Notre Dame building.",
},
],
)
)
text_input = gr.Textbox(lines=1, label="Chat Message", scale=0)
chat_msg = text_input.submit(add_message, [text_input, chatbot], [chatbot])
bot_msg = chat_msg.then(
interact_with_agent, [chatbot], [chatbot, inner_monologue_component]
)
text_input.submit(lambda: "", None, text_input)
chatbot.example_select(append_example_message, [chatbot], [chatbot]).then(
interact_with_agent, [chatbot], [chatbot, inner_monologue_component]
)
if __name__ == "__main__":
demo.launch()
|