File size: 7,060 Bytes
60d9d3a
 
 
8e43a1d
 
7b4ec76
 
60d9d3a
5ea745b
be5ca66
 
 
 
 
5ea745b
be5ca66
c694655
 
 
 
be5ca66
 
60d9d3a
 
 
be5ca66
 
7b4ec76
5ea745b
be5ca66
 
 
5ea745b
7b4ec76
5adb1e9
5ea745b
 
 
 
 
5adb1e9
424fe1e
 
 
 
 
 
 
 
 
be5ca66
 
 
 
 
 
 
 
 
 
5ea745b
be5ca66
5ea745b
e1ed8d0
 
be5ca66
 
424fe1e
 
 
c694655
be5ca66
60d9d3a
879b924
60d9d3a
5ea745b
60d9d3a
 
 
 
 
 
 
 
 
 
 
 
 
5ea745b
60d9d3a
 
 
 
5ea745b
8e43a1d
1742d80
5ea745b
1742d80
424fe1e
 
 
60d9d3a
be5ca66
 
424fe1e
be5ca66
424fe1e
 
 
 
60d9d3a
5ea745b
8e43a1d
 
 
1742d80
 
 
 
8e43a1d
 
 
1742d80
 
 
 
be5ca66
 
8e43a1d
 
be5ca66
8e43a1d
 
 
c694655
e1ed8d0
 
 
c694655
 
 
 
 
 
 
 
e1ed8d0
 
 
 
 
 
 
c694655
 
 
e1ed8d0
 
 
 
 
 
 
5ea745b
c694655
424fe1e
 
 
 
 
be5ca66
424fe1e
 
 
5ea745b
 
 
 
 
 
 
e1ed8d0
5ea745b
 
 
 
 
 
7b4ec76
e1ed8d0
 
7b4ec76
5ea745b
 
 
 
 
 
 
 
 
 
 
 
 
60d9d3a
 
424fe1e
 
 
60d9d3a
 
be5ca66
60d9d3a
 
 
1742d80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
from gradio import ChatMessage
from utils import stream_from_transformers_agent
from gradio.context import Context
from gradio import Request
import pickle
import os
from dotenv import load_dotenv
from agent import get_agent, DEFAULT_TASK_SOLVING_TOOLBOX
from transformers.agents import (
    DuckDuckGoSearchTool,
    ImageQuestionAnsweringTool,
    VisitWebpageTool,
)
from tools.text_to_image import TextToImageTool
from transformers import load_tool
from prompts import (
    DEFAULT_SQUAD_REACT_CODE_SYSTEM_PROMPT,
    FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT,
)
from pygments.formatters import HtmlFormatter


load_dotenv()

SESSION_PERSISTENCE_ENABLED = os.getenv("SESSION_PERSISTENCE_ENABLED", False)

sessions_path = "sessions.pkl"
sessions = (
    pickle.load(open(sessions_path, "rb"))
    if SESSION_PERSISTENCE_ENABLED and os.path.exists(sessions_path)
    else {}
)

# If currently hosted on HuggingFace Spaces, use the default model, otherwise use the local model
model_name = (
    "meta-llama/Meta-Llama-3.1-8B-Instruct"
    if os.getenv("SPACE_ID") is not None
    else "http://localhost:1234/v1"
)

image_qa_tool = ImageQuestionAnsweringTool()
image_qa_tool.inputs = {
    "image": {
        "type": "image",
        "description": "The image containing the information. It must be a PIL Image.",
    },
    "question": {"type": "string", "description": "The question in English"},
}

ADDITIONAL_TOOLS = [
    DuckDuckGoSearchTool(),
    VisitWebpageTool(),
    ImageQuestionAnsweringTool(),
    load_tool("speech_to_text"),
    load_tool("text_to_speech"),
    load_tool("translation"),
    TextToImageTool(),
]

# Add image tools to the default task solving toolbox, for a more visually interactive experience
TASK_SOLVING_TOOLBOX = DEFAULT_TASK_SOLVING_TOOLBOX + ADDITIONAL_TOOLS

# system_prompt = DEFAULT_SQUAD_REACT_CODE_SYSTEM_PROMPT
system_prompt = FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT

agent = get_agent(
    model_name=model_name,
    toolbox=TASK_SOLVING_TOOLBOX,
    system_prompt=system_prompt,
    use_openai=True,  # Use OpenAI instead of a local or HF model as the base LLM engine
)

app = None


def append_example_message(x: gr.SelectData, messages):
    if x.value["text"] is not None:
        message = x.value["text"]
    if "files" in x.value:
        if isinstance(x.value["files"], list):
            message = "Here are the files: "
            for file in x.value["files"]:
                message += f"{file}, "
        else:
            message = x.value["files"]
    messages.append(ChatMessage(role="user", content=message))
    return messages


def add_message(message, messages):
    messages.append(ChatMessage(role="user", content=message))
    return messages


def interact_with_agent(messages, request: Request):
    session_hash = request.session_hash
    prompt = messages[-1]["content"]
    agent.logs = sessions.get(session_hash + "_logs", [])
    yield messages, gr.update(
        value="<center><h1>Thinking...</h1></center>", visible=True
    )
    for msg in stream_from_transformers_agent(agent, prompt):
        if isinstance(msg, ChatMessage):
            messages.append(msg)
            yield messages, gr.update(visible=True)
        else:
            yield messages, gr.update(
                value=f"<center><h1>{msg}</h1></center>", visible=True
            )
    yield messages, gr.update(value="<center><h1>Idle</h1></center>", visible=False)


def persist(component):

    def resume_session(value, request: Request):
        session_hash = request.session_hash
        print(f"Resuming session for {session_hash}")
        state = sessions.get(session_hash, value)
        agent.logs = sessions.get(session_hash + "_logs", [])
        return state

    def update_session(value, request: Request):
        session_hash = request.session_hash
        print(f"Updating persisted session state for {session_hash}")
        sessions[session_hash] = value
        sessions[session_hash + "_logs"] = agent.logs
        if SESSION_PERSISTENCE_ENABLED:
            pickle.dump(sessions, open(sessions_path, "wb"))

    Context.root_block.load(resume_session, inputs=[component], outputs=component)
    component.change(update_session, inputs=[component], outputs=None)

    return component


from gradio.components import (
    Component as GradioComponent,
)
from gradio.components.chatbot import (
    Chatbot,
    FileDataDict,
    FileData,
    ComponentMessage,
    FileMessage,
)


class CleanChatBot(Chatbot):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def _postprocess_content(
        self,
        chat_message: (
            str | tuple | list | FileDataDict | FileData | GradioComponent | None
        ),
    ) -> str | FileMessage | ComponentMessage | None:
        response = super()._postprocess_content(chat_message)
        print(f"Post processing content: {response}")
        if isinstance(response, ComponentMessage):
            print(f"Setting open to False for {response}")
            response.props["open"] = False
        return response


with gr.Blocks(
    fill_height=True,
    css=".gradio-container .message .content {text-align: left;}"
    + HtmlFormatter().get_style_defs(".highlight"),
) as demo:
    state = gr.State()
    inner_monologue_component = gr.Markdown(
        """<h2>Inner Monologue</h2>""", visible=False
    )
    chatbot = persist(
        gr.Chatbot(
            value=[],
            label="SQuAD Agent",
            type="messages",
            avatar_images=(
                None,
                "SQuAD.png",
            ),
            scale=1,
            autoscroll=True,
            show_copy_all_button=True,
            show_copy_button=True,
            placeholder="""<h1>SQuAD Agent</h1>
            <h2>I am your friendly guide to the Stanford Question and Answer Dataset (SQuAD).</h2>
            <h2>You can ask me questions about the dataset. You can also ask me to create images 
            to help illustrate the topics under discussion, or expand the discussion beyond the dataset.</h2>
        """,
            examples=[
                {
                    "text": "What is on top of the Notre Dame building?",
                },
                {
                    "text": "Tell me what's on top of the Notre Dame building, and draw a picture of it.",
                },
                {
                    "text": "Draw a picture of whatever is on top of the Notre Dame building.",
                },
            ],
        )
    )
    text_input = gr.Textbox(lines=1, label="Chat Message", scale=0)
    chat_msg = text_input.submit(add_message, [text_input, chatbot], [chatbot])
    bot_msg = chat_msg.then(
        interact_with_agent, [chatbot], [chatbot, inner_monologue_component]
    )
    text_input.submit(lambda: "", None, text_input)
    chatbot.example_select(append_example_message, [chatbot], [chatbot]).then(
        interact_with_agent, [chatbot], [chatbot, inner_monologue_component]
    )

if __name__ == "__main__":
    demo.launch()