File size: 4,182 Bytes
60d9d3a
 
 
8e43a1d
 
7b4ec76
 
60d9d3a
5ea745b
 
60d9d3a
 
 
7b4ec76
5ea745b
 
 
7b4ec76
5adb1e9
5ea745b
 
 
 
 
5adb1e9
5ea745b
 
 
 
60d9d3a
879b924
60d9d3a
5ea745b
60d9d3a
 
 
 
 
 
 
 
 
 
 
 
 
5ea745b
60d9d3a
 
 
 
5ea745b
8e43a1d
1742d80
5ea745b
1742d80
60d9d3a
 
 
 
 
5ea745b
8e43a1d
 
 
1742d80
 
 
 
8e43a1d
 
 
1742d80
 
 
 
7b4ec76
8e43a1d
 
 
 
 
 
 
5ea745b
60d9d3a
5ea745b
 
 
 
 
 
 
 
 
 
 
 
 
 
7b4ec76
 
5ea745b
 
 
 
 
 
 
 
 
 
 
 
 
60d9d3a
 
 
 
 
 
 
 
 
1742d80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import gradio as gr
from gradio import ChatMessage
from utils import stream_from_transformers_agent
from gradio.context import Context
from gradio import Request
import pickle
import os
from dotenv import load_dotenv
from agent import get_agent, DEFAULT_TASK_SOLVING_TOOLBOX
from tools.text_to_image import TextToImageTool

load_dotenv()

sessions_path = "sessions.pkl"
sessions = (
    pickle.load(open(sessions_path, "rb")) if os.path.exists(sessions_path) else {}
)

# If currently hosted on HuggingFace Spaces, use the default model, otherwise use the local model
model_name = (
    "meta-llama/Meta-Llama-3.1-8B-Instruct"
    if os.getenv("SPACE_ID") is not None
    else "http://localhost:1234/v1"
)

# Add image tools to the default task solving toolbox, for a more visually interactive experience
TASK_SOLVING_TOOLBOX = DEFAULT_TASK_SOLVING_TOOLBOX + [TextToImageTool()]

agent = get_agent(model_name=model_name, toolbox=TASK_SOLVING_TOOLBOX)

app = None


def append_example_message(x: gr.SelectData, messages):
    if x.value["text"] is not None:
        message = x.value["text"]
    if "files" in x.value:
        if isinstance(x.value["files"], list):
            message = "Here are the files: "
            for file in x.value["files"]:
                message += f"{file}, "
        else:
            message = x.value["files"]
    messages.append(ChatMessage(role="user", content=message))
    return messages


def add_message(message, messages):
    messages.append(ChatMessage(role="user", content=message))
    return messages


def interact_with_agent(messages, request: Request):
    session_hash = request.session_hash
    prompt = messages[-1]["content"]
    agent.logs = sessions.get(session_hash + "_logs", [])
    for msg in stream_from_transformers_agent(agent, prompt):
        messages.append(msg)
        yield messages
    yield messages


def persist(component):

    def resume_session(value, request: Request):
        session_hash = request.session_hash
        print(f"Resuming session for {session_hash}")
        state = sessions.get(session_hash, value)
        agent.logs = sessions.get(session_hash + "_logs", [])
        return state

    def update_session(value, request: Request):
        session_hash = request.session_hash
        print(f"Updating persisted session state for {session_hash}")
        sessions[session_hash] = value
        sessions[session_hash + "_logs"] = agent.logs
        pickle.dump(sessions, open(sessions_path, "wb"))
        return

    Context.root_block.load(resume_session, inputs=[component], outputs=component)
    component.change(update_session, inputs=[component], outputs=[])

    return component


with gr.Blocks(fill_height=True) as demo:
    chatbot = persist(
        gr.Chatbot(
            value=[],
            label="SQuAD Agent",
            type="messages",
            avatar_images=(
                None,
                "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
            ),
            scale=1,
            autoscroll=True,
            show_copy_all_button=True,
            show_copy_button=True,
            placeholder="""<h1>SQuAD Agent</h1>
            <h2>I am your friendly guide to the Stanford Question and Answer Dataset (SQuAD).</h2>
        """,
            examples=[
                {
                    "text": "What is on top of the Notre Dame building?",
                },
                {
                    "text": "Tell me what's on top of the Notre Dame building, and draw a picture of it.",
                },
                {
                    "text": "Draw a picture of whatever is on top of the Notre Dame building.",
                },
            ],
        )
    )
    text_input = gr.Textbox(lines=1, label="Chat Message", scale=0)
    chat_msg = text_input.submit(add_message, [text_input, chatbot], [chatbot])
    bot_msg = chat_msg.then(interact_with_agent, [chatbot], [chatbot])
    text_input.submit(lambda: "", None, text_input)
    chatbot.example_select(append_example_message, [chatbot], [chatbot]).then(
        interact_with_agent, [chatbot], [chatbot]
    )

if __name__ == "__main__":
    demo.launch()