vojay's picture
Update app.py
d2f5bb7 verified
raw
history blame
1.28 kB
from huggingface_hub import login
from transformers import AutoModelForCausalLM, AutoTokenizer
from adapters import AutoAdapterModel
import os
import gradio as gr
import torch
HF_TOKEN = os.getenv("HF_TOKEN")
login(token=HF_TOKEN)
title = "Mental Health Chatbot"
description = "This bot is using a fine-tuned version of meta-llama/Llama-2-7b-chat-hf"
model_id = "meta-llama/Llama-2-7b-chat-hf"
adapter_model_id = "vojay/Llama-2-7b-chat-hf-mental-health"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16)
model.load_adapter(adapter_model_id)
def predict(input, history=[]):
new_user_input_ids = tokenizer.encode(f"{input}{tokenizer.eos_token}", return_tensors="pt")
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
history = model.generate(
bot_input_ids,
max_length=4000,
pad_token_id=tokenizer.eos_token_id
).tolist()
response = tokenizer.decode(history[0]).split("<|endoftext|>")
response = [
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
]
return response, history
gr.Interface(
fn=predict,
title=title,
description=description,
inputs=["text", "state"],
outputs=["chatbot", "state"]
).launch()