Spaces:
Sleeping
Sleeping
File size: 3,223 Bytes
9b5b26a 9882eb9 1f15940 b8a1072 9b5b26a c19d193 6aae614 0ffdbb6 8fe992b 9b5b26a 5df72d6 b8a1072 9882eb9 9b5b26a 1f15940 0ffdbb6 9b5b26a 1f15940 9b5b26a 1f15940 23633e0 1f15940 0ffdbb6 1f15940 9882eb9 9b5b26a 1f15940 8c01ffb 6aae614 ae7a494 e121372 bf6d34c 29ec968 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b 1f15940 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
from duckduckgo_search import DDGS
from typing import Optional
import time
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
import pandas as pd
from datetime import datetime, timedelta
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def get_similar_songs(song_title: str, artist_name: str, num_recommendations: int = 5) -> str:
"""A tool that suggests similar songs based on a given song and artist.
Args:
song_title: Name of the song
artist_name: Name of the artist
num_recommendations: Number of similar songs to return (default: 5)
"""
# LastFM API endpoint and parameters
API_KEY = "d17717e179b91347018a13452956c8a0" # Replace with your LastFM API key
BASE_URL = "http://ws.audioscrobbler.com/2.0/"
try:
# Get similar tracks
params = {
"method": "track.getsimilar",
"artist": artist_name,
"track": song_title,
"api_key": API_KEY,
"format": "json",
"limit": num_recommendations
}
response = requests.get(BASE_URL, params=params)
data = response.json()
# Check if we got valid results
if "similartracks" not in data or "track" not in data["similartracks"]:
return f"No similar songs found for '{song_title}' by {artist_name}. Please check the song and artist names."
# Format the recommendations
similar_tracks = data["similartracks"]["track"]
result = f"Similar songs to '{song_title}' by {artist_name}:\n\n"
for i, track in enumerate(similar_tracks, 1):
result += f"{i}. \"{track['name']}\" by {track['artist']['name']}\n"
result += f" Match score: {float(track['match'])*100:.1f}%\n"
if 'playcount' in track:
result += f" Playcount: {track['playcount']:,}\n"
result += "\n"
return result
except Exception as e:
return f"Error finding similar songs: {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, get_similar_songs], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |