import gradio as gr from huggingface_hub import InferenceClient # Step 1: Read your background info with open("BACKGROUND_NEW.md", "r", encoding="utf-8") as f: background_text = f.read() # Step 2: Set up your InferenceClient (same as before) client = InferenceClient("bunnycore/QwQen-3B-LCoT") # HuggingFaceH4/zephyr-7b-beta # meta-llama/Llama-3.2-1B def respond( message, history: list[dict], system_message: str, max_tokens: int, temperature: float, top_p: float, ): if history is None: history = [] # Include background text as part of the system message for context combined_system_message = f"{system_message}\n\n### Background Information ###\n{background_text}" # Start building the conversation history messages = [{"role": "system", "content": combined_system_message}] # Add conversation history for interaction in history: if "user" in interaction: messages.append({"role": "user", "content": interaction["user"]}) if "assistant" in interaction: messages.append({"role": "assistant", "content": interaction["assistant"]}) # Add the latest user message messages.append({"role": "user", "content": message}) # Generate response response = "" for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = msg.choices[0].delta.content response += token yield response # print("----- SYSTEM MESSAGE -----") # print(messages[0]["content"]) # print("----- FULL MESSAGES LIST -----") # for m in messages: # print(m) # print("-------------------------") # Step 3: Build a Gradio Blocks interface with two Tabs with gr.Blocks() as demo: # Tab 1: GPT Chat Agent with gr.Tab("GPT Chat Agent"): gr.Markdown("## Welcome to Varun's GPT Agent") gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!") chat = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], type="messages", # Specify message type ) # # Tab 2: Background Document # with gr.Tab("Varun's Background"): # gr.Markdown("# About Varun") # gr.Markdown(background_text) # Step 4: Launch if __name__ == "__main__": demo.launch()